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ABSTRACT 

Multimodal foundation models (MFMs) are rapidly emerging as a transformative 

paradigm in artificial intelligence–driven drug discovery. Unlike traditional machine 

learning systems that operate within isolated domains—such as genomics, proteomics, 

or cheminformatics—MFMs are pretrained on massive, heterogeneous datasets and 

are capable of learning transferable representations across multiple biological and 

chemical modalities. This integrative capability addresses a long-standing bottleneck 

in pharmaceutical research: the fragmentation of computational pipelines that fail to 

capture the complex, multi-scale nature of drug–disease interactions. Recent 

breakthroughs in protein structure prediction, protein language modelling, and 

chemical representation learning have demonstrated that large-scale pretraining 

enables models to infer latent biological principles directly from data. Protein 

foundation models trained on hundreds of millions of sequences have achieved near-

experimental accuracy in structure prediction, while chemical language models 

pretrained on millions of molecules have shown strong generalization in molecular 

property prediction and de novo compound generation. Simultaneously, genomic 

foundation models are increasingly capable of modelling regulatory sequences, variant 

effects, and transcriptomic states. However, most existing approaches treat these 

modalities independently. This manuscript presents a comprehensive synthesis and 

conceptual framework for multimodal foundation models for end-to-end drug 

discovery, integrating genomics, proteomics, and chemical space within unified 

architectures. We review the evolution of foundation models across biological 

domains, analyze multimodal fusion strategies, and propose modular architectures 

capable of supporting target identification, context-aware ligand design, 

polypharmacology prediction, and safety assessment within a single learning system. 

We further discuss self-supervised pretraining objectives, cross-modal alignment 

techniques, benchmarking strategies, and real-world deployment challenges, including 

regulatory acceptance, interpretability, and data governance. 
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By enabling joint reasoning across genotype, molecular phenotype, and chemical 

intervention, MFMs have the potential to significantly reduce drug attrition rates, 

accelerate lead optimization, and support precision therapeutics tailored to patient-

specific biological contexts. This review aims to provide both a theoretical foundation 

and practical roadmap for researchers and industry practitioners seeking to harness 

multimodal AI for next-generation drug discovery. 

 

KEYWORDS: Multimodal foundation models, AI-driven drug discovery, Integrative 

genomics and proteomics, Chemical language models, End-to-end molecular design. 

 

 
Figure 1 Graphical abstract for multimodal foundation models for integrated 

drug discovery. 

 

1. INTRODUCTION 

Drug discovery remains one of the most complex and costly processes in modern 

science, with estimates suggesting that the development of a single approved 

therapeutic can require over a decade and investments exceeding USD 2 billion [1]. 

Despite remarkable advances in high-throughput screening, structural biology, and 

omics technologies, the overall success rate of drug development remains low, 

particularly in areas such as oncology, neurodegeneration, and rare diseases. A key 

reason for this inefficiency lies in the intrinsic complexity of biological systems, 

where therapeutic efficacy and safety emerge from interactions across multiple 
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molecular layers, including genetic variation, protein structure and dynamics, 

signalling networks, and chemical properties of drug candidates. 

 

Historically, computational approaches in drug discovery have evolved in domain-

specific silos. Cheminformatics methods focus on molecular similarity, quantitative 

structure–activity relationships (QSAR), and docking; bioinformatics approaches 

analyze genomic and proteomic data for target discovery; and systems biology models 

attempt to capture pathway-level effects. While each of these approaches has 

delivered important insights, their limited integration constrains the ability to model 

drug–disease interactions holistically. 

 

The emergence of deep learning, particularly transformer-based architectures, has 

catalyzed a paradigm shift. Foundation models—large neural networks pretrained on 

massive, diverse datasets—have demonstrated unprecedented capabilities in natural 

language processing, computer vision, and increasingly, in biological sciences. The 

defining characteristic of foundation models is their ability to learn general-purpose 

representations that can be adapted to a wide range of downstream tasks with minimal 

task-specific data [2]. 

 

In biology, the success of protein foundation models represents a watershed moment. 

AlphaFold’s accurate prediction of protein three-dimensional structures from amino 

acid sequences solved a decades-old grand challenge in structural biology and 

dramatically expanded the accessible structural proteome [3]. Parallel efforts in 

protein language modelling demonstrated that transformer models trained purely on 

protein sequences learn representations that encode structural, functional, and 

evolutionary information [4]. These developments have immediate implications for 

drug discovery, enabling structure-based design and functional inference at 

unprecedented scale. 

 

In the chemical domain, large-scale molecular language models pretrained on 

SMILES strings or molecular graphs have shown strong performance in molecular 

property prediction, virtual screening, and generative design [5]. Reinforcement 

learning and diffusion-based approaches further allow these models to optimize 

compounds across multiple objectives, such as potency, selectivity, and synthetic 

accessibility. 

 

Meanwhile, genomic foundation models trained on DNA and RNA sequences are 

increasingly capable of modelling regulatory grammar, variant effects, and 

transcriptional dynamics, offering new opportunities for understanding disease 

mechanisms and patient heterogeneity [6]. Despite these advances, most existing 

models operate within single modalities. 

 

Multimodal foundation models seek to overcome this limitation by integrating 

genomics, proteomics, and chemical space within a unified learning framework. Such 

models promise to enable truly end-to-end drug discovery pipelines, where disease 

context, target biology, and molecular design are jointly optimized. This manuscript 
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explores the theoretical foundations, architectural strategies, and practical implications 

of MFMs in drug discovery. 

 

 
Figure 2. Illustrative Performance Comparison of Foundation Models. 

 

Comparison of representative protein-structure, protein-language, chemical-language, 

and multimodal foundation models. Scores are illustrative. 

 

2. Literature Review 

2.1 Foundation Models in Biology 

The concept of foundation models was popularized by large language models in NLP, 

but its applicability to biology has become increasingly evident. Biological 

sequences—DNA, RNA, and proteins—share fundamental similarities with natural 

language: they are discrete symbol sequences governed by complex, hierarchical rules 

shaped by evolution. Transformer architectures, originally developed for language 

modelling, are therefore well-suited for biological sequence analysis. 

 

Early demonstrations of protein language models showed that unsupervised 

pretraining on large sequence databases yields embeddings that capture secondary 

structure, evolutionary conservation, and functional motifs [4]. These embeddings can 

be transferred to downstream tasks such as mutation effect prediction, protein–protein 

interaction inference, and enzyme classification with minimal fine-tuning. 

 

2.2 Genomic Foundation Models 

Genomic foundation models are typically trained on large corpora of DNA sequences 

using self-supervised objectives such as masked language modelling or next-token 

prediction. Models such as DNABERT and subsequent variants have shown that 

transformers can learn regulatory syntax directly from raw genomic sequences, 

enabling accurate prediction of transcription factor binding, chromatin accessibility, 

and splicing patterns [6,7]. 
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More recent models integrate transcriptomic and epigenomic data, allowing 

representation learning across regulatory layers. These models are particularly 

relevant for drug discovery, as genetic variation strongly influences drug response, 

toxicity, and disease susceptibility. Integrating genomic embeddings into MFMs 

enables conditioning molecular design on disease-associated variants or patient-

specific regulatory states [13,15]. 

 

2.3 Protein Language and Structure Models 

Protein foundation models represent one of the most mature areas of biological AI. 

AlphaFold’s deep neural network architecture integrates multiple sequence 

alignments, attention mechanisms, and geometric constraints to predict protein 

structures with near-experimental accuracy [3]. This breakthrough has had immediate 

impact on structure-based drug design, enabling docking and pocket analysis for 

proteins lacking experimental structures. 

 

Parallel to structure prediction, protein language models such as ESM and ProtTrans 

have demonstrated that large-scale pretraining on hundreds of millions of sequences 

yields embeddings rich in functional and structural information [4,7]. ESMFold 

further showed that protein language models can be directly adapted for structure 

prediction, reducing reliance on multiple sequence alignments and enabling rapid 

inference at scale[8,10]. 

 

2.4 Chemical Foundation Models 

Chemical foundation models apply similar principles to molecular representations. 

SMILES-based transformers and graph neural networks pretrained on millions of 

compounds learn representations that generalize across diverse chemical tasks [5]. 

ChemBERTa and related models have demonstrated improved performance in QSAR 

benchmarks and toxicity prediction. 

 

Generative chemical models further enable de novo molecular design, allowing the 

exploration of vast chemical space beyond existing libraries. When integrated into 

MFMs, chemical generators can be conditioned on protein embeddings or genomic 

context, enabling target- and disease-aware molecular design. 

 

 
Figure 1 Drug Discovery: Single Vs Multimodal Models. 
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Figure 2 Multimodal drug discovery data overview. 

 

2.5 Data Modalities and Representations 

Multimodal drug discovery integrates genomics, proteomics, chemical space, and 

phenotypic data [69,71]. Each modality captures complementary biological 

information and requires specialized representations [65,66]. 

 

Table 1. Core Data Modalities for Multimodal Drug Discovery 

Modality Representative 

Databases 

Typical Data 

Size (Records) 

Common 

Representations 

Genomics 

(DNA/RNA) 

ENCODE, 1000 

Genomes, TCGA 

10^6 - 10^9 Sequences, VCF, 

k-mers 

Proteomics 

(Sequences/Structures) 

UniProt, PDB, 

AlphaFold DB 

10^5 - 10^8 AA sequences, 3D 

coordinates, 

embeddings 

Chemical Space 

(SMILES, Graphs) 

PubChem, 

ChEMBL, ZINC 

10^6 - 10^8 SMILES, 

molecular graphs, 

fingerprints 

Phenotypic/Assay 

Data 

ChEMBL, 

PubChem 

BioAssay 

10^5 - 10^7 IC50, assay 

curves, omics 

profiles 

 

3. Multimodal Foundation Model Architectures 

3.1 Architectural Design Principles 

Multimodal foundation models for drug discovery must satisfy requirements that go 

beyond conventional multimodal learning systems [21,23]. Unlike vision–language 

models, MFMs must capture biophysical constraints, chemical validity, and 

biological causality across modalities [11]. Consequently, architectural design 

emphasizes modularity, interpretability, and scalability [24,33]. 

A canonical MFM architecture consists of three layers: 
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1. Modality-specific encoders 

2. Cross-modal fusion and alignment module 

3. Task-specific decoders (predictive and generative) 
 

This modular approach allows leveraging pretrained single-modality foundation 

models while enabling joint reasoning through learned fusion layers. 

 

3.2 Modality-Specific Encoders 

Genomic Encoder 

Genomic encoders typically use transformer architectures pretrained with masked 

language modelling or span masking on DNA/RNA sequences[12,29]. Advanced 

implementations incorporate [27,28]: 

 Variant-aware tokenization 

 Positional encoding reflecting chromosomal context 

 Integration of epigenomic signals (e.g., chromatin accessibility) 

 

These encoders learn embeddings that encode regulatory grammar, enhancer–

promoter interactions, and variant impact, which are critical for disease-contextualized 

drug discovery. 

 

Proteomic Encoder 

Protein encoders are usually large pretrained protein language models (PLMs) such as 

ESM-family or ProtTrans models. These encoders output residue-level and sequence-

level embeddings that capture: 

 Secondary and tertiary structure 

 Evolutionary constraints 

 Functional motifs and binding interfaces 

 

Structure-aware extensions integrate 3D coordinate information or predicted distance 

matrices, enabling geometry-informed fusion with chemical representations [47,62]. 

 

Chemical Encoder 

Chemical encoders process molecules represented as: 

 SMILES strings (transformers) 

 Molecular graphs (graph neural networks) 

 Hybrid graph–sequence encoders 

 

Pretraining objectives include masked atom prediction, bond reconstruction, and 

contrastive alignment with molecular properties. These encoders produce embeddings 

optimized for downstream tasks such as binding affinity, ADMET prediction, and 

generative design [30,31]. 

 

3.3 Cross-Modal Fusion Mechanisms 

The fusion layer is the defining component of an MFM. Several strategies are 

employed: 
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Cross-Attention Transformers 

Cross-attention allows one modality (e.g., molecule) to attend to another (e.g., protein 

binding pocket). This is particularly effective for modelling drug–target interactions 

[60]. 

Contrastive Multimodal Alignment 

Contrastive learning aligns embeddings from different modalities by bringing known 

interacting pairs closer in latent space while separating non-interacting pairs [63]. 

Graph-of-Graphs Fusion 

Emerging architectures model interactions across molecular graphs, protein graphs, 

and pathway graphs using higher-order message passing. 

3.4 Task-Specific Decoders 

MFMs typically include multiple decoders: 

 Predictive heads: affinity prediction, toxicity, selectivity 

 Generative heads: autoregressive or diffusion-based molecule generation 

 Explanation heads: attention-based or gradient-based interpretability 

This multi-head design enables joint optimization across discovery objectives. 

 

4. Pretraining Objectives and Cross-Modal Alignment 

4.1 Self-Supervised Pretraining Objectives 

Self-supervised learning is essential due to limited labelled data. Common objectives 

include: 

 Masked token prediction (DNA, protein, SMILES) 

 Structure reconstruction (protein distances, torsions) 

 Property prediction as auxiliary tasks 

These objectives encourage learning biologically meaningful latent representations. 

4.2 Cross-Modal Pretraining Tasks 

Key cross-modal objectives include: 

 Drug–target contrastive learning 

 Protein–ligand co-embedding 

 Genotype–phenotype alignment 
For example, a molecule embedding is trained to align closely with the embedding of 

its known protein target. 

4.3 Conditional Generation and Multi-Objective Optimization 

Generative heads are trained to produce molecules conditioned on: 

 Protein embeddings 

 Disease-specific genomic context 

 ADMET constraints 

Reinforcement learning and diffusion models are often combined to optimize across 

multiple objectives simultaneously. 

 

5. End-to-End Drug Discovery Applications 

5.1 Target Identification and Prioritization 

MFMs can integrate genomic association signals, protein draggability features, and 

chemical tractability into a unified target-ranking framework. This reduces false-

positive targets and improves translational relevance. 
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5.2 Context-Aware Ligand Design 

By conditioning molecular generation on protein structure and genomic state, MFMs 

enable: 

 Variant-specific drug design 

 Isoform-selective targeting 

 Resistance-aware inhibitor generation 

This is particularly valuable in oncology and antimicrobial resistance. 

5.3 Polypharmacology and Network Pharmacology 

MFMs naturally support multi-target reasoning by embedding drugs and proteins in a 

shared latent space. This enables prediction of: 

 Beneficial poly-pharmacology 

 Off-target liabilities 

 Drug–drug interactions 

5.4 Safety and ADMET Prediction 

Integrating chemical structure with proteomic and genomic context improves 

prediction of: 

 Hepatotoxicity 

 Cardiotoxicity 

 Metabolic stability 

This has direct implications for reducing late-stage attrition. 

 

6. Benchmarking, Evaluation, and Validation  

6.1 Benchmark Datasets 

Evaluation uses a combination of: 

 Public benchmarks (MoleculeNet, ChEMBL) 

 Structural benchmarks (PDBbind) 

 Retrospective drug discovery case studies 

6.2 Metrics and Validation 

Metrics include: 

 AUROC, RMSE, enrichment factors 

 Calibration error 

 Chemical validity and novelty 

Prospective validation and wet-lab collaboration remain critical. 

6.3 Interpretability and Explainability 

Explainable AI techniques such as attention visualization, attribution maps, and 

counterfactual generation are increasingly required for regulatory acceptance. 

 

7. Ethical, Regulatory, and Intellectual Property Considerations 

7.1 Data Governance and Bias 

Multimodal foundation models inherit biases present in their training datasets. In drug 

discovery, these biases may arise from overrepresentation of well-studied targets, 

diseases prevalent in high-income populations, or chemical scaffolds favoured by 

historical screening programs. Genomic datasets are known to be skewed toward 

populations of European ancestry, raising concerns about the generalizability of AI-

derived therapeutics 38,39]. 
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Mitigating such biases requires deliberate dataset curation, transparency in data 

provenance, and the incorporation of fairness-aware learning objectives. Regulatory 

agencies increasingly expect sponsors to document dataset composition and assess 

demographic representativeness, especially for precision medicine applications 

[40,42]. 

7.2 Explainability and Trustworthy AI 

Regulatory bodies such as the US Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) emphasize transparency and interpretability in 

AI systems used for drug development. While MFMs are inherently complex, 

explainability mechanisms—such as attention maps, feature attribution, and 

counterfactual generation—are essential for establishing trust. 

In the context of MFMs, explainability must operate across modalities. For example, a 

toxicity prediction should be traceable to specific molecular substructures, protein 

targets, and genomic pathways. Such cross-modal explanations not only support 

regulatory review but also provide actionable insights for medicinal chemists and 

biologists. 

7.3 Regulatory Landscape 

Regulatory guidance on AI in drug development is evolving rapidly. Recent FDA 

discussion papers outline expectations for model validation, lifecycle management, 

and human oversight for AI-enabled tools. MFMs used for hypothesis generation may 

face lower regulatory scrutiny, whereas models directly informing candidate selection 

or clinical decisions require rigorous validation. 

Importantly, MFMs blur traditional boundaries between discovery and development, 

raising questions about how regulatory frameworks should classify AI-generated 

evidence. Early engagement with regulators and the use of model-informed drug 

development (MIDD) principles are recommended to facilitate acceptance. 

7.4 Intellectual Property Challenges 

The use of large pretrained models raises novel intellectual property (IP) questions. 

Ownership of model weights, training data, and AI-generated molecules is not always 

clear, particularly when models are pretrained on publicly available datasets and fine-

tuned on proprietary data. 

From a patent perspective, AI-generated molecules may face challenges in meeting 

inventorship criteria in some jurisdictions. Pharmaceutical companies are increasingly 

adopting hybrid strategies, combining AI-driven generation with human expert 

validation to strengthen IP claims. 

 

8. Industrial Translation and Case Studies 

8.1 Integration into Pharmaceutical Pipelines 

Several pharmaceutical and biotechnology companies have begun integrating 

multimodal AI platforms into their discovery workflows. These platforms typically 

combine chemical and biological foundation models with proprietary screening and 

clinical data, enabling rapid iteration across target identification, hit generation, and 

lead optimization. 

MFMs are particularly valuable in early discovery stages, where uncertainty is high 

and data is sparse. By leveraging pretrained representations, MFMs reduce 

dependence on large task-specific datasets and accelerate exploration of novel targets. 
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8.2 Representative Case Studies 

AI-Enabled Antibiotic Discovery 

A landmark study demonstrated the use of deep learning to identify novel antibiotics 

effective against multidrug-resistant pathogens by screening chemical space using 

learned representations [31]. While not fully multimodal, subsequent extensions 

incorporated protein target information and genomic resistance markers, illustrating 

the trajectory toward MFMs. 

Structure-Guided Oncology Drug Design 

Integration of AlphaFold-derived protein structures with generative chemical models 

has enabled rapid identification of kinase inhibitors optimized for selectivity and 

resistance profiles. Incorporating tumour-specific genomic variants further enhances 

therapeutic relevance. 

Rare Disease Drug Repurposing 

MFMs trained on genomic and phenotypic data have been applied to identify 

repurposing opportunities for rare diseases, where limited patient populations preclude 

large-scale trials. These applications highlight the societal impact potential of MFMs. 

8.3 Human–AI Collaboration 

Despite increasing automation, human expertise remains central. Medicinal chemists, 

structural biologists, and clinicians play critical roles in defining objectives, 

interpreting model outputs, and designing validation experiments. MFMs should be 

viewed as decision-support systems rather than autonomous discovery engines. 

 

9. Limitations and Open Scientific Challenges 

9.1 Data Quality and Completeness 

While data volume has increased dramatically, high-quality paired datasets linking 

genomics, proteomics, and chemistry remain limited. Noisy labels, inconsistent assay 

conditions, and incomplete annotations pose significant challenges for model training 

and evaluation [48]. 

9.2 Computational and Environmental Costs 

Training MFMs requires substantial computational resources, raising concerns about 

accessibility and environmental sustainability. Efficient architectures, parameter 

sharing, and transfer learning strategies are essential to democratize access [74,75]. 

9.3 Causal Reasoning and Generalization 

Most MFMs learn correlations rather than causal relationships. Distinguishing 

causative targets from correlated biomarkers remains a fundamental challenge. 

Integrating causal inference frameworks and mechanistic modelling with MFMs is an 

important research direction. 

9.4 Experimental Validation Bottlenecks 

AI-generated hypotheses ultimately require experimental validation. Limited wet-lab 

capacity can become a bottleneck, emphasizing the need for active learning and 

closed-loop experimentation to prioritize the most promising candidates. 
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10. Future Directions and Emerging Trends 

10.1 Closed-Loop and Self-Improving Systems 

Future MFMs are likely to be embedded in closed-loop systems that iteratively 

generate hypotheses, test them experimentally, and update model parameters. Such 

systems could dramatically accelerate optimization cycles [49,50]. 

10.2 Personalized and Precision Therapeutics 

Conditioning molecular design on patient-specific genomic and transcriptomic 

profiles opens the door to truly personalized medicines. MFMs provide a natural 

framework for integrating such data at scale [53]. 

10.3 Federated and Privacy-Preserving Learning 

Federated learning enables MFMs to be trained across multiple institutions without 

sharing raw data, addressing privacy and IP concerns. This approach is particularly 

relevant for clinical and proprietary datasets [54]. 

10.4 Toward Autonomous Discovery Agents 

Combining MFMs with large language models and reinforcement learning agents 

could yield semi-autonomous discovery systems capable of literature mining, 

hypothesis generation, and experimental planning. Careful governance will be 

essential to ensure responsible use. 

 

11. CONCLUSIONS 

Multimodal foundation models represent a unifying and transformative approach to 

drug discovery, enabling joint reasoning across genomics, proteomics, and chemical 

space [33,50,78]. By integrating heterogeneous biological data into coherent 

representations, MFMs address long-standing fragmentation in computational 

pipelines and offer new opportunities for context-aware molecular design, improved 

safety prediction, and accelerated translation. 

While significant challenges remain—including data bias, interpretability, 

computational cost, and regulatory acceptance—the rapid pace of methodological 

innovation and growing industrial adoption suggest that MFMs will play a central role 

in next-generation pharmaceutical research. Continued collaboration between AI 

researchers, biologists, chemists, clinicians, and regulators will be essential to fully 

realize the potential of this paradigm. 
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