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ABSTRACT

Multimodal foundation models (MFMs) are rapidly emerging as a transformative
paradigm in artificial intelligence—driven drug discovery. Unlike traditional machine
learning systems that operate within isolated domains—such as genomics, proteomics,
or cheminformatics—MFMs are pretrained on massive, heterogeneous datasets and
are capable of learning transferable representations across multiple biological and
chemical modalities. This integrative capability addresses a long-standing bottleneck
in pharmaceutical research: the fragmentation of computational pipelines that fail to
capture the complex, multi-scale nature of drug—disease interactions. Recent
breakthroughs in protein structure prediction, protein language modelling, and
chemical representation learning have demonstrated that large-scale pretraining
enables models to infer latent biological principles directly from data. Protein
foundation models trained on hundreds of millions of sequences have achieved near-
experimental accuracy in structure prediction, while chemical language models
pretrained on millions of molecules have shown strong generalization in molecular
property prediction and de novo compound generation. Simultaneously, genomic
foundation models are increasingly capable of modelling regulatory sequences, variant
effects, and transcriptomic states. However, most existing approaches treat these
modalities independently. This manuscript presents a comprehensive synthesis and
conceptual framework for multimodal foundation models for end-to-end drug
discovery, integrating genomics, proteomics, and chemical space within unified
architectures. We review the evolution of foundation models across biological
domains, analyze multimodal fusion strategies, and propose modular architectures
capable of supporting target identification, context-aware ligand design,
polypharmacology prediction, and safety assessment within a single learning system.
We further discuss self-supervised pretraining objectives, cross-modal alignment
techniques, benchmarking strategies, and real-world deployment challenges, including
regulatory acceptance, interpretability, and data governance.
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By enabling joint reasoning across genotype, molecular phenotype, and chemical
intervention, MFMs have the potential to significantly reduce drug attrition rates,
accelerate lead optimization, and support precision therapeutics tailored to patient-
specific biological contexts. This review aims to provide both a theoretical foundation
and practical roadmap for researchers and industry practitioners seeking to harness
multimodal Al for next-generation drug discovery.

KEYWORDS: Multimodal foundation models, Al-driven drug discovery, Integrative
genomics and proteomics, Chemical language models, End-to-end molecular design.
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Figure 1 Graphical abstract for multimodal foundation models for integrated
drug discovery.

1. INTRODUCTION

Drug discovery remains one of the most complex and costly processes in modern
science, with estimates suggesting that the development of a single approved
therapeutic can require over a decade and investments exceeding USD 2 billion [1].
Despite remarkable advances in high-throughput screening, structural biology, and
omics technologies, the overall success rate of drug development remains low,
particularly in areas such as oncology, neurodegeneration, and rare diseases. A key
reason for this inefficiency lies in the intrinsic complexity of biological systems,
where therapeutic efficacy and safety emerge from interactions across multiple
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molecular layers, including genetic variation, protein structure and dynamics,
signalling networks, and chemical properties of drug candidates.

Historically, computational approaches in drug discovery have evolved in domain-
specific silos. Cheminformatics methods focus on molecular similarity, quantitative
structure—activity relationships (QSAR), and docking; bioinformatics approaches
analyze genomic and proteomic data for target discovery; and systems biology models
attempt to capture pathway-level effects. While each of these approaches has
delivered important insights, their limited integration constrains the ability to model
drug—disease interactions holistically.

The emergence of deep learning, particularly transformer-based architectures, has
catalyzed a paradigm shift. Foundation models—Iarge neural networks pretrained on
massive, diverse datasets—have demonstrated unprecedented capabilities in natural
language processing, computer vision, and increasingly, in biological sciences. The
defining characteristic of foundation models is their ability to learn general-purpose
representations that can be adapted to a wide range of downstream tasks with minimal
task-specific data [2].

In biology, the success of protein foundation models represents a watershed moment.
AlphaFold’s accurate prediction of protein three-dimensional structures from amino
acid sequences solved a decades-old grand challenge in structural biology and
dramatically expanded the accessible structural proteome [3]. Parallel efforts in
protein language modelling demonstrated that transformer models trained purely on
protein sequences learn representations that encode structural, functional, and
evolutionary information [4]. These developments have immediate implications for
drug discovery, enabling structure-based design and functional inference at
unprecedented scale.

In the chemical domain, large-scale molecular language models pretrained on
SMILES strings or molecular graphs have shown strong performance in molecular
property prediction, virtual screening, and generative design [5]. Reinforcement
learning and diffusion-based approaches further allow these models to optimize
compounds across multiple objectives, such as potency, selectivity, and synthetic
accessibility.

Meanwhile, genomic foundation models trained on DNA and RNA sequences are
increasingly capable of modelling regulatory grammar, variant effects, and
transcriptional dynamics, offering new opportunities for understanding disease
mechanisms and patient heterogeneity [6]. Despite these advances, most existing
models operate within single modalities.

Multimodal foundation models seek to overcome this limitation by integrating
genomics, proteomics, and chemical space within a unified learning framework. Such
models promise to enable truly end-to-end drug discovery pipelines, where disease
context, target biology, and molecular design are jointly optimized. This manuscript
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explores the theoretical foundations, architectural strategies, and practical implications
of MFMs in drug discovery.

Figure 1: lllustrative performance comparison (synthetic scores)
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Figure 2. lllustrative Performance Comparison of Foundation Models.

Comparison of representative protein-structure, protein-language, chemical-language,
and multimodal foundation models. Scores are illustrative.

2. Literature Review

2.1 Foundation Models in Biology

The concept of foundation models was popularized by large language models in NLP,
but its applicability to biology has become increasingly evident. Biological
sequences—DNA, RNA, and proteins—share fundamental similarities with natural
language: they are discrete symbol sequences governed by complex, hierarchical rules
shaped by evolution. Transformer architectures, originally developed for language
modelling, are therefore well-suited for biological sequence analysis.

Early demonstrations of protein language models showed that unsupervised
pretraining on large sequence databases yields embeddings that capture secondary
structure, evolutionary conservation, and functional motifs [4]. These embeddings can
be transferred to downstream tasks such as mutation effect prediction, protein—protein
interaction inference, and enzyme classification with minimal fine-tuning.

2.2 Genomic Foundation Models

Genomic foundation models are typically trained on large corpora of DNA sequences
using self-supervised objectives such as masked language modelling or next-token
prediction. Models such as DNABERT and subsequent variants have shown that
transformers can learn regulatory syntax directly from raw genomic sequences,
enabling accurate prediction of transcription factor binding, chromatin accessibility,
and splicing patterns [6,7].
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More recent models integrate transcriptomic and epigenomic data, allowing
representation learning across regulatory layers. These models are particularly
relevant for drug discovery, as genetic variation strongly influences drug response,
toxicity, and disease susceptibility. Integrating genomic embeddings into MFMs
enables conditioning molecular design on disease-associated variants or patient-
specific regulatory states [13,15].

2.3 Protein Language and Structure Models

Protein foundation models represent one of the most mature areas of biological Al.
AlphaFold’s deep neural network architecture integrates multiple sequence
alignments, attention mechanisms, and geometric constraints to predict protein
structures with near-experimental accuracy [3]. This breakthrough has had immediate
Impact on structure-based drug design, enabling docking and pocket analysis for
proteins lacking experimental structures.

Parallel to structure prediction, protein language models such as ESM and ProtTrans
have demonstrated that large-scale pretraining on hundreds of millions of sequences
yields embeddings rich in functional and structural information [4,7]. ESMFold
further showed that protein language models can be directly adapted for structure
prediction, reducing reliance on multiple sequence alignments and enabling rapid
inference at scale[8,10].

2.4 Chemical Foundation Models
Chemical foundation models apply similar principles to molecular representations.
SMILES-based transformers and graph neural networks pretrained on millions of
compounds learn representations that generalize across diverse chemical tasks [5].
ChemBERTa and related models have demonstrated improved performance in QSAR
benchmarks and toxicity prediction.

Generative chemical models further enable de novo molecular design, allowing the
exploration of vast chemical space beyond existing libraries. When integrated into
MFMs, chemical generators can be conditioned on protein embeddings or genomic
context, enabling target- and disease-aware molecular design.

Single-Modality Models Multimodal Foundation Model

Genomics Proteomics Chemistry

Accuracy Innovation ]Generalization
oW —— — HIGH

Figure 1 Drug Discovery: Single Vs Multimodal Models.
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Figure 2 Multimodal drug discovery data overview.

2.5 Data Modalities and Representations
Multimodal drug discovery integrates genomics, proteomics, chemical space, and

phenotypic data [69,71].

information and requires specialized representations [65,66].

Table 1. Core Data Modalities for Multimodal Drug Discovery

Each modality captures complementary biological

Modality Representative Typical Data | Common
Databases Size (Records) Representations
Genomics ENCODE, 1000 | 106 - 1019 Sequences, VCF,
(DNA/RNA) Genomes, TCGA k-mers
Proteomics UniProt, PDB, | 10"5 - 1078 AA sequences, 3D
(Sequences/Structures) | AlphaFold DB coordinates,
embeddings
Chemical Space | PubChem, 10”6 - 10"8 SMILES,
(SMILES, Graphs) ChEMBL, ZINC molecular graphs,
fingerprints
Phenotypic/Assay ChEMBL, 1075 - 1077 I1C50, assay
Data PubChem curves, omics
BioAssay profiles

3. Multimodal Foundation Model Architectures
3.1 Architectural Design Principles

Multimodal foundation models for drug discovery must satisfy requirements that go
beyond conventional multimodal learning systems [21,23]. Unlike vision—language
models, MFMs must capture biophysical constraints, chemical validity, and
biological causality across modalities [11]. Consequently, architectural design
emphasizes modularity, interpretability, and scalability [24,33].
A canonical MFM architecture consists of three layers:
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1. Modality-specific encoders
2. Cross-modal fusion and alignment module
3. Task-specific decoders (predictive and generative)

This modular approach allows leveraging pretrained single-modality foundation
models while enabling joint reasoning through learned fusion layers.

3.2 Modality-Specific Encoders

Genomic Encoder

Genomic encoders typically use transformer architectures pretrained with masked
language modelling or span masking on DNA/RNA sequences[12,29]. Advanced
implementations incorporate [27,28]:

e Variant-aware tokenization

e Positional encoding reflecting chromosomal context

e Integration of epigenomic signals (e.g., chromatin accessibility)

These encoders learn embeddings that encode regulatory grammar, enhancer—
promoter interactions, and variant impact, which are critical for disease-contextualized
drug discovery.

Proteomic Encoder

Protein encoders are usually large pretrained protein language models (PLMSs) such as
ESM-family or ProtTrans models. These encoders output residue-level and sequence-
level embeddings that capture:

e Secondary and tertiary structure

e Evolutionary constraints

e Functional motifs and binding interfaces

Structure-aware extensions integrate 3D coordinate information or predicted distance
matrices, enabling geometry-informed fusion with chemical representations [47,62].

Chemical Encoder

Chemical encoders process molecules represented as:
e SMILES strings (transformers)

e Molecular graphs (graph neural networks)

e Hybrid graph—sequence encoders

Pretraining objectives include masked atom prediction, bond reconstruction, and
contrastive alignment with molecular properties. These encoders produce embeddings
optimized for downstream tasks such as binding affinity, ADMET prediction, and
generative design [30,31].

3.3 Cross-Modal Fusion Mechanisms
The fusion layer is the defining component of an MFM. Several strategies are
employed:
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Cross-Attention Transformers

Cross-attention allows one modality (e.g., molecule) to attend to another (e.g., protein
binding pocket). This is particularly effective for modelling drug—target interactions
[60].

Contrastive Multimodal Alignment

Contrastive learning aligns embeddings from different modalities by bringing known
interacting pairs closer in latent space while separating non-interacting pairs [63].
Graph-of-Graphs Fusion

Emerging architectures model interactions across molecular graphs, protein graphs,
and pathway graphs using higher-order message passing.

3.4 Task-Specific Decoders

MFMs typically include multiple decoders:

e Predictive heads: affinity prediction, toxicity, selectivity

e Generative heads: autoregressive or diffusion-based molecule generation

e Explanation heads: attention-based or gradient-based interpretability

This multi-head design enables joint optimization across discovery objectives.

4. Pretraining Objectives and Cross-Modal Alignment

4.1 Self-Supervised Pretraining Objectives

Self-supervised learning is essential due to limited labelled data. Common objectives
include:

e Masked token prediction (DNA, protein, SMILES)

e Structure reconstruction (protein distances, torsions)

e Property prediction as auxiliary tasks

These objectives encourage learning biologically meaningful latent representations.
4.2 Cross-Modal Pretraining Tasks

Key cross-modal objectives include:

e Drug-target contrastive learning

e Protein-ligand co-embedding

e Genotype—phenotype alignment

For example, a molecule embedding is trained to align closely with the embedding of
its known protein target.

4.3 Conditional Generation and Multi-Objective Optimization

Generative heads are trained to produce molecules conditioned on:

e Protein embeddings

o Disease-specific genomic context

e ADMET constraints

Reinforcement learning and diffusion models are often combined to optimize across
multiple objectives simultaneously.

5. End-to-End Drug Discovery Applications

5.1 Target Identification and Prioritization

MFMs can integrate genomic association signals, protein draggability features, and
chemical tractability into a unified target-ranking framework. This reduces false-
positive targets and improves translational relevance.
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5.2 Context-Aware Ligand Design

By conditioning molecular generation on protein structure and genomic state, MFMs
enable:

e Variant-specific drug design

e [soform-selective targeting

e Resistance-aware inhibitor generation

This is particularly valuable in oncology and antimicrobial resistance.

5.3 Polypharmacology and Network Pharmacology

MFMs naturally support multi-target reasoning by embedding drugs and proteins in a
shared latent space. This enables prediction of:

e Beneficial poly-pharmacology

e Off-target liabilities

e Drug-drug interactions

5.4 Safety and ADMET Prediction

Integrating chemical structure with proteomic and genomic context improves
prediction of:

e Hepatotoxicity

e Cardiotoxicity

e Metabolic stability

This has direct implications for reducing late-stage attrition.

6. Benchmarking, Evaluation, and Validation

6.1 Benchmark Datasets

Evaluation uses a combination of:

e Public benchmarks (MoleculeNet, ChEMBL)

e Structural benchmarks (PDBbind)

e Retrospective drug discovery case studies

6.2 Metrics and Validation

Metrics include:

e AUROC, RMSE, enrichment factors

e Calibration error

e Chemical validity and novelty

Prospective validation and wet-lab collaboration remain critical.

6.3 Interpretability and Explainability

Explainable Al techniques such as attention visualization, attribution maps, and
counterfactual generation are increasingly required for regulatory acceptance.

7. Ethical, Regulatory, and Intellectual Property Considerations

7.1 Data Governance and Bias

Multimodal foundation models inherit biases present in their training datasets. In drug
discovery, these biases may arise from overrepresentation of well-studied targets,
diseases prevalent in high-income populations, or chemical scaffolds favoured by
historical screening programs. Genomic datasets are known to be skewed toward
populations of European ancestry, raising concerns about the generalizability of Al-
derived therapeutics 38,39].
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Mitigating such biases requires deliberate dataset curation, transparency in data
provenance, and the incorporation of fairness-aware learning objectives. Regulatory
agencies increasingly expect sponsors to document dataset composition and assess
demographic representativeness, especially for precision medicine applications
[40,42].

7.2 Explainability and Trustworthy Al

Regulatory bodies such as the US Food and Drug Administration (FDA) and the
European Medicines Agency (EMA) emphasize transparency and interpretability in
Al systems used for drug development. While MFMs are inherently complex,
explainability mechanisms—such as attention maps, feature attribution, and
counterfactual generation—are essential for establishing trust.

In the context of MFMs, explainability must operate across modalities. For example, a
toxicity prediction should be traceable to specific molecular substructures, protein
targets, and genomic pathways. Such cross-modal explanations not only support
regulatory review but also provide actionable insights for medicinal chemists and
biologists.

7.3 Regulatory Landscape

Regulatory guidance on Al in drug development is evolving rapidly. Recent FDA
discussion papers outline expectations for model validation, lifecycle management,
and human oversight for Al-enabled tools. MFMs used for hypothesis generation may
face lower regulatory scrutiny, whereas models directly informing candidate selection
or clinical decisions require rigorous validation.

Importantly, MFMs blur traditional boundaries between discovery and development,
raising questions about how regulatory frameworks should classify Al-generated
evidence. Early engagement with regulators and the use of model-informed drug
development (MIDD) principles are recommended to facilitate acceptance.

7.4 Intellectual Property Challenges

The use of large pretrained models raises novel intellectual property (IP) questions.
Ownership of model weights, training data, and Al-generated molecules is not always
clear, particularly when models are pretrained on publicly available datasets and fine-
tuned on proprietary data.

From a patent perspective, Al-generated molecules may face challenges in meeting
inventorship criteria in some jurisdictions. Pharmaceutical companies are increasingly
adopting hybrid strategies, combining Al-driven generation with human expert
validation to strengthen IP claims.

8. Industrial Translation and Case Studies

8.1 Integration into Pharmaceutical Pipelines

Several pharmaceutical and biotechnology companies have begun integrating
multimodal Al platforms into their discovery workflows. These platforms typically
combine chemical and biological foundation models with proprietary screening and
clinical data, enabling rapid iteration across target identification, hit generation, and
lead optimization.

MFMs are particularly valuable in early discovery stages, where uncertainty is high
and data is sparse. By leveraging pretrained representations, MFMs reduce
dependence on large task-specific datasets and accelerate exploration of novel targets.

Page 10



Copyright@ International Journal Pharmaceutical Medicinal Research

8.2 Representative Case Studies

Al-Enabled Antibiotic Discovery

A landmark study demonstrated the use of deep learning to identify novel antibiotics
effective against multidrug-resistant pathogens by screening chemical space using
learned representations [31]. While not fully multimodal, subsequent extensions
incorporated protein target information and genomic resistance markers, illustrating
the trajectory toward MFMs.

Structure-Guided Oncology Drug Design

Integration of AlphaFold-derived protein structures with generative chemical models
has enabled rapid identification of kinase inhibitors optimized for selectivity and
resistance profiles. Incorporating tumour-specific genomic variants further enhances
therapeutic relevance.

Rare Disease Drug Repurposing

MFMs trained on genomic and phenotypic data have been applied to identify
repurposing opportunities for rare diseases, where limited patient populations preclude
large-scale trials. These applications highlight the societal impact potential of MFMs.
8.3 Human-AI Collaboration

Despite increasing automation, human expertise remains central. Medicinal chemists,
structural biologists, and clinicians play critical roles in defining objectives,
interpreting model outputs, and designing validation experiments. MFMs should be
viewed as decision-support systems rather than autonomous discovery engines.

9. Limitations and Open Scientific Challenges

9.1 Data Quality and Completeness

While data volume has increased dramatically, high-quality paired datasets linking
genomics, proteomics, and chemistry remain limited. Noisy labels, inconsistent assay
conditions, and incomplete annotations pose significant challenges for model training
and evaluation [48].

9.2 Computational and Environmental Costs

Training MFMs requires substantial computational resources, raising concerns about
accessibility and environmental sustainability. Efficient architectures, parameter
sharing, and transfer learning strategies are essential to democratize access [74,75].
9.3 Causal Reasoning and Generalization

Most MFMs learn correlations rather than causal relationships. Distinguishing
causative targets from correlated biomarkers remains a fundamental challenge.
Integrating causal inference frameworks and mechanistic modelling with MFMs is an
Important research direction.

9.4 Experimental Validation Bottlenecks

Al-generated hypotheses ultimately require experimental validation. Limited wet-lab
capacity can become a bottleneck, emphasizing the need for active learning and
closed-loop experimentation to prioritize the most promising candidates.
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10. Future Directions and Emerging Trends

10.1 Closed-Loop and Self-Improving Systems

Future MFMs are likely to be embedded in closed-loop systems that iteratively
generate hypotheses, test them experimentally, and update model parameters. Such
systems could dramatically accelerate optimization cycles [49,50].

10.2 Personalized and Precision Therapeutics

Conditioning molecular design on patient-specific genomic and transcriptomic
profiles opens the door to truly personalized medicines. MFMs provide a natural
framework for integrating such data at scale [53].

10.3 Federated and Privacy-Preserving Learning

Federated learning enables MFMs to be trained across multiple institutions without
sharing raw data, addressing privacy and IP concerns. This approach is particularly
relevant for clinical and proprietary datasets [54].

10.4 Toward Autonomous Discovery Agents

Combining MFMs with large language models and reinforcement learning agents
could vyield semi-autonomous discovery systems capable of literature mining,
hypothesis generation, and experimental planning. Careful governance will be
essential to ensure responsible use.

11. CONCLUSIONS

Multimodal foundation models represent a unifying and transformative approach to
drug discovery, enabling joint reasoning across genomics, proteomics, and chemical
space [33,50,78]. By integrating heterogeneous biological data into coherent
representations, MFMs address long-standing fragmentation in computational
pipelines and offer new opportunities for context-aware molecular design, improved
safety prediction, and accelerated translation.

While significant challenges remain—including data bias, interpretability,
computational cost, and regulatory acceptance—the rapid pace of methodological
innovation and growing industrial adoption suggest that MFMs will play a central role
in next-generation pharmaceutical research. Continued collaboration between Al
researchers, biologists, chemists, clinicians, and regulators will be essential to fully
realize the potential of this paradigm.
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