

TURNING VESICLES INTO VECTORS: A REVIEW OF EXOSOME ENGINEERING FOR TARGETED THERAPEUTICS

Suruchi Gupta*¹, Anit Kumar², Swati Singh³, Shivanand Prasad⁴, Deepali Mehra⁵

¹Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand.

²Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P.

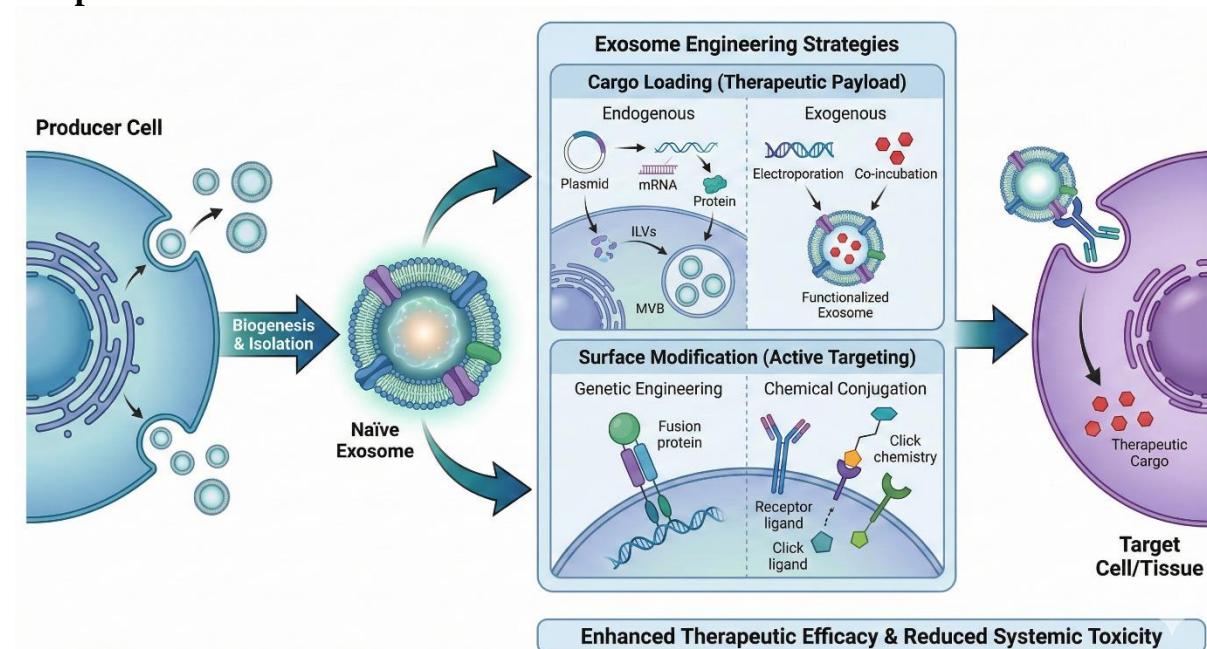
³School of Pharmacy, JSS University, Noida, U.P

⁴Shyam Sai Institute of Education, Mairwa, Siwan, Bihar

⁵Muzaffarpur Institute of Technology, Muzaffarpur, Bihar

Article Received: 18 December 2025

*Corresponding Author: Suruchi Gupta


Article Revised: 08 January 2026

Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand.

Published on: 28 January 2026

DOI: <https://doi-doi.org/101555/ijpmr.3500>

Graphical Abstract:

ABSTRACT:

The development of synthetic nanocarriers, such as liposomes and polymeric nanoparticles, has revolutionized pharmacokinetics; however, their clinical utility is frequently circumscribed by limitations regarding immunogenicity, cytotoxicity, and rapid clearance by the reticuloendothelial system (RES). In this context, exosomes—nanosized extracellular vesicles (30–150 nm) involved in intercellular communication—have emerged as a paradigm-shifting alternative for precision medicine. As endogenous transporters, exosomes exhibit superior biocompatibility, inherent low immunogenicity, and a unique capacity to traverse physiological

obstacles, including the blood-brain barrier (BBB). This review provides a comprehensive analysis of the transition from synthetic to biological delivery systems, detailing the fundamental biogenesis and molecular composition that confer exosomes their "stealth" properties. We critically evaluate current methodologies for cargo loading, comparing the efficiency and membrane integrity of endogenous loading (transfection) versus exogenous techniques (electroporation, sonication). Furthermore, we explore surface engineering strategies designed to enhance tissue-specific homing, with a particular focus on therapeutic applications in oncology and neurology. Despite their transformative potential, the translation of exosome therapeutics from the bench to the bedside faces significant hurdles. We conclude by addressing the critical challenges of batch heterogeneity, large-scale production, and the establishment of standardized Good Manufacturing Practice (GMP) protocols, offering a future perspective on overcoming these barriers to realize the full potential of cell-free drug delivery.

INTRODUCTION

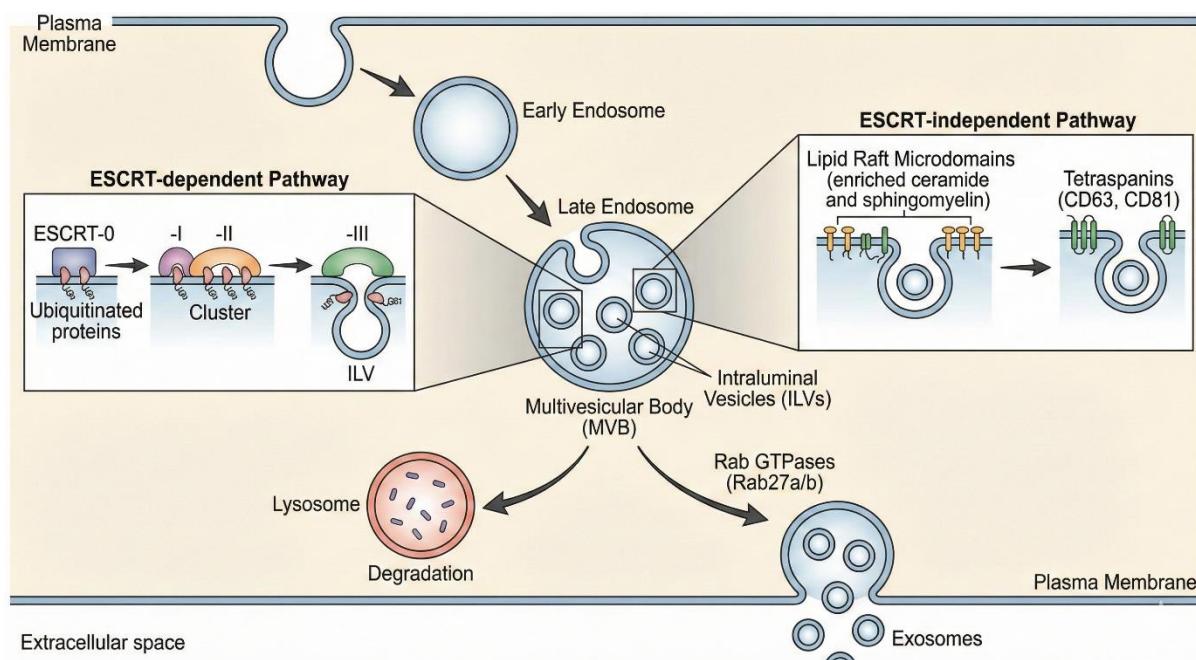
The concept of the "magic bullet"—a therapeutic agent capable of targeting diseased tissues without harming healthy organs—was first proposed by Paul Ehrlich over a century ago(1). Since then, the field of pharmacology has strived to transition from systemic drug administration, which often entails severe off-target toxicity and poor bioavailability, to precision nanomedicine(2). The advent of synthetic nanocarriers, particularly liposomes and polymeric nanoparticles, marked a significant milestone in this journey. FDA-approved formulations like Doxil® (pegylated liposomal doxorubicin) demonstrated the potential of nanotechnology to improve the pharmacokinetic profile of cytotoxic drugs via the Enhanced Permeability and Retention (EPR) effect(3,4). However, despite these successes, synthetic systems face persistent biological hurdles. The "foreign" nature of synthetic polymers often triggers immune recognition, leading to rapid clearance by the reticuloendothelial system (RES)(5). Furthermore, phenomena such as the Accelerated Blood Clearance (ABC) effect upon repeated administration(6) and the inability of most large-molecule carriers to cross physiological barriers, specifically the blood-brain barrier (BBB), remain critical bottlenecks in clinical translation(7). In the search for a delivery system that combines the versatility of synthetic carriers with the biocompatibility of host cells, nature has provided a compelling solution: exosomes. Originally dismissed as cellular waste disposal units(8), exosomes are now recognized as a distinct class of extracellular vesicles (EVs) ranging from 30 to 150 nm in diameter(9). Unlike synthetic nanoparticles, exosomes are endogenous mediators of intercellular communication, transporting a complex cargo of proteins, lipids, and nucleic acids (mRNA, miRNA) between cells(10). This biological origin confers them with unique advantages. First, their lipid bilayer composition is naturally optimized for stability in biological fluids and fusion with recipient cell membranes. Second, they express "don't eat me" signals, such as CD47, which allow them to evade phagocytosis by macrophages and circulate for extended periods(11). The paradigm shift towards exosome-based therapeutics is driven by the realization that these vesicles are not merely passive carriers but active, engineerable vectors(12). They possess an intrinsic ability to home to specific tissues—a property that can be further enhanced through

surface display technologies. Moreover, their small size and specific surface proteins enable them to traverse barriers that are impermeable to most drugs, opening new avenues for treating neurodegenerative disorders and glioblastomas(13).

This review focuses on the technological transformation of exosomes from biological messengers to next-generation drug delivery systems. We will first outline the biogenesis and composition of exosomes to understand their structural advantages. Subsequently, we will critically evaluate the current methods for isolating these vesicles and the diverse strategies employed to load them with small molecules and macromolecular therapeutics. Finally, we will discuss the state-of-the-art in surface engineering for active targeting and the current clinical landscape, addressing the translational challenges of scale-up and standardization that must be overcome to bring exosome therapeutics to the clinic.

Biological Context and Biogenesis

To effectively engineer exosomes for therapeutic delivery, it is imperative to first understand their biological origin, as this dictates their structure, stability, and naturally acquired surface markers. The term "extracellular vesicle" (EV) encapsulates a highly heterogeneous population of membrane-bound particles released by almost all cell types(14). Based on their biogenesis and size, EVs are generally categorized into three distinct classes: apoptotic bodies, microvesicles (ectosomes), and exosomes(15).


Classification and Differentiation:

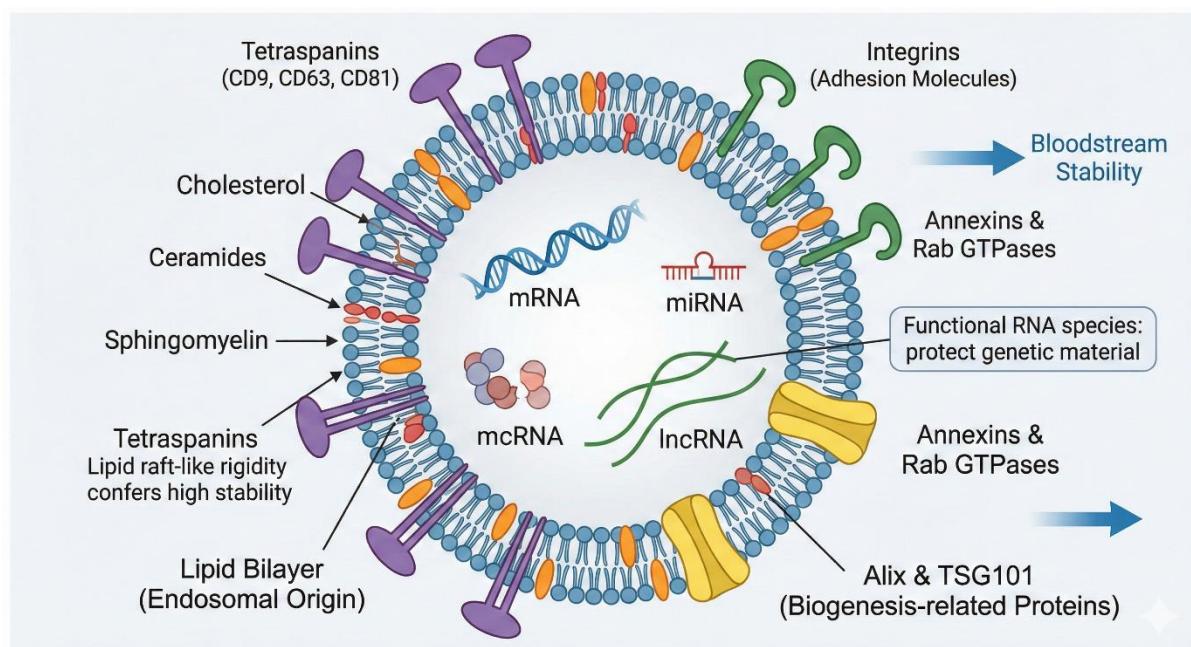
Apoptotic bodies are the largest class (1–5 μm), generated exclusively during programmed cell death (apoptosis) via plasma membrane blebbing. They often contain nuclear fragments and organelles, making them unsuitable for controlled drug delivery due to their inflammatory potential and heterogeneous content(16). Microvesicles (100–1000 nm) form through the direct outward budding and fission of the plasma membrane. While they share some surface markers with the parent cell, their size variability and potential for aggregation pose challenges for standardization. In contrast, exosomes are the smallest subset (30–150 nm) and are unique in their intracellular origin. Unlike microvesicles, exosomes do not bud directly from the cell surface; rather, they are born within the endosomal network(9). This specific origin pathway provides exosomes with a more defined size distribution and a specific set of membrane proteins, making them the most attractive candidates for nanomedicine applications(17).

The Biogenesis Pathway:

The formation of exosomes is a tightly regulated, multi-step process beginning with the invagination of the plasma membrane to form an early endosome. As this endosome matures into a late endosome, the limiting membrane invaginates inward, sequestering cytoplasmic constituents and forming intraluminal vesicles (ILVs)(18). The late endosome, now packed with dozens of ILVs, is referred to as a Multivesicular Body (MVB). The sorting of specific cargo into these ILVs is the critical step that defines the therapeutic potential of the exosome. This process is primarily driven by the Endosomal Sorting Complex Required for Transport (ESCRT)

machinery. The ESCRT system comprises four complexes (ESCRT-0, -I, -II, and -III) that work sequentially to recognize ubiquitinated proteins, cluster them, and induce membrane curvature to pinch off the ILVs(19). However, distinct ESCRT-independent pathways also exist, often driven by lipid raft microdomains rich in ceramides and sphingomyelin, or by tetraspanin proteins (CD63, CD81)(20,21). Once formed, the MVB faces a binary fate: it can either fuse with a lysosome, leading to the degradation of its contents (a regulatory mechanism to control cellular signaling), or it can traffic to the cell periphery and fuse with the plasma membrane. The latter event releases the ILVs into the extracellular space as exosomes. Rab GTPases(22) (specifically Rab27a and Rab27b) regulate this trafficking and docking process as shown in **Figure 1**.

Figure 1: Mechanisms of exosome biogenesis and secretion


Molecular Composition and Architecture:

The composition of the exosome membrane reflects its endosomal origin, differing significantly from the plasma membrane (Figure 1).(23)

- **Lipids:** The membrane is enriched in cholesterol, sphingomyelin, and ceramides(24). This "lipid raft-like" rigidity confers high stability in the bloodstream, protecting the internal cargo from degradation—a key advantage over synthetic liposomes(25).
- **Proteins:** Exosomes are characterized by specific marker proteins used for identification. These include tetraspanins (CD9, CD63, CD81), membrane transport proteins (Annexins, Rab GTPases), and biogenesis-related proteins (Alix, TSG101)(26). Crucially for drug delivery, they also carry adhesion molecules (integrins) that dictate their homing behavior to specific tissues(27).
- **Nucleic Acids:** Perhaps the most intriguing discovery is the presence of functional RNA species (mRNA, miRNA, lncRNA) inside exosomes(28). This natural capability to package and protect genetic material is the foundation for using

exosomes as vectors for gene therapy and RNA interference (RNAi) applications(29).

Understanding these molecular signatures is not merely academic; it is the prerequisite for the next critical step in therapeutic development: isolation and characterization.

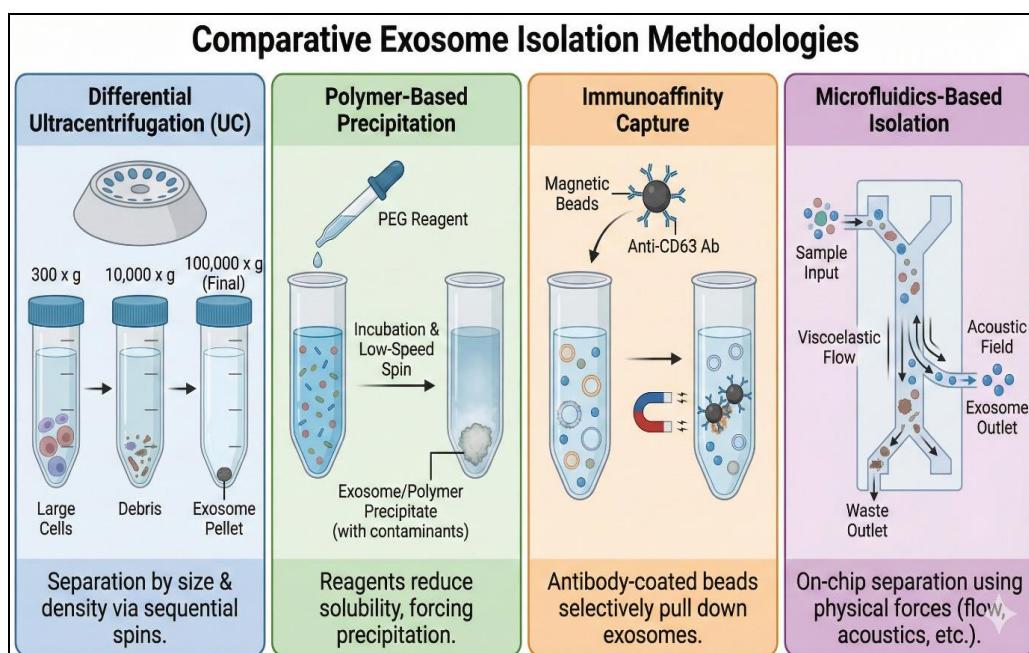
Figure 2: Molecular architecture and composition of an exosome.

Isolation and Characterization Techniques

The successful translation of exosome-based therapeutics is currently hindered by a major bottleneck: the lack of standardized isolation and characterization protocols. Unlike synthetic nanoparticles, which are manufactured under controlled chemical conditions, exosomes must be purified from complex biological fluids (e.g., cell culture media, plasma, milk) that are rich in contaminating proteins, lipids, and other extracellular vesicles(30). The choice of isolation method requires a strategic trade-off between yield, purity, and functional integrity(31).

3.1. Isolation Methodologies: A Comparative Analysis

- **Differential Ultracentrifugation (UC):**


Historically regarded as the "gold standard," this method separates particles based on size and density through a series of centrifugation steps with increasing force (up to $100,000 \times g$)(32).

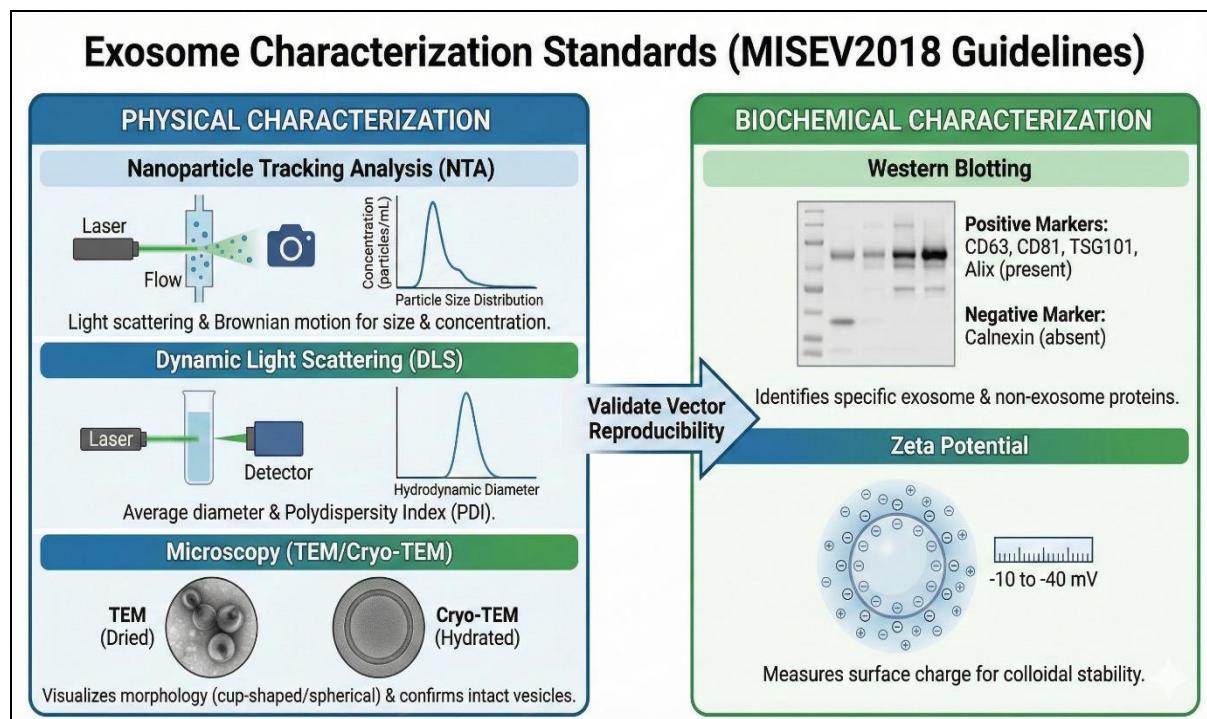
Advantages: No additional chemicals are required; widely published and accepted.

Disadvantages: It is labor-intensive, time-consuming, and highly inefficient for large-scale production. Crucially, the high shear forces can damage the vesicular membrane, and "caking" at the tube bottom often leads to the aggregation of exosomes with protein contaminants(33).

- **Size Exclusion Chromatography (SEC):** SEC uses a porous stationary phase (e.g., Sepharose) to separate exosomes from smaller proteins and HDL based on hydrodynamic radius(34).

- **Advantages:** It is a gentle method that preserves the biological activity and vesicular structure of exosomes. It yields highly pure samples free from soluble proteins.
- **Disadvantages:** The resulting sample is often diluted, requiring a secondary concentration step (e.g., ultrafiltration). It is difficult to scale up for industrial manufacturing(35).
- **Polymer-Based Precipitation:** Reagents like Polyethylene Glycol (PEG) (e.g., ExoQuick™) reduce the solubility of exosomes, forcing them to precipitate out of solution(36).
- **Advantages:** extremely simple, fast, and high-yield; requires no specialized equipment.
- **Disadvantages:** It is a "dirty" method; it co-precipitates non-exosomal proteins, polymers, and other contaminants, making it unsuitable for clinical applications where purity is paramount(37).
- **Immunoaffinity Capture:** This technique utilizes beads or surfaces coated with antibodies against exosome-specific markers (e.g., anti-CD63 or anti-EpCAM) to selectively pull down exosomes.
- **Advantages:** Yields the highest purity and allows for the isolation of specific subpopulations (e.g., tumor-derived exosomes).
- **Disadvantages:** Very expensive and low yield; the elution process to detach exosomes from antibodies can compromise membrane integrity(38).
- **Microfluidics-Based Isolation:** The frontier of isolation technology, utilizing viscoelastic flow, acoustics, or electromagnetic fields to separate exosomes on a chip(39).
- **Advantages:** Rapid, low sample volume, and high potential for automation and point-of-care integration.
- **Disadvantages:** Currently limited to small-scale research; high fabrication costs(40).

Figure 3. Schematic representation of exosome isolation techniques.


Illustration of the workflow for Differential Ultracentrifugation, Polymer-Based Precipitation, Immunoaffinity

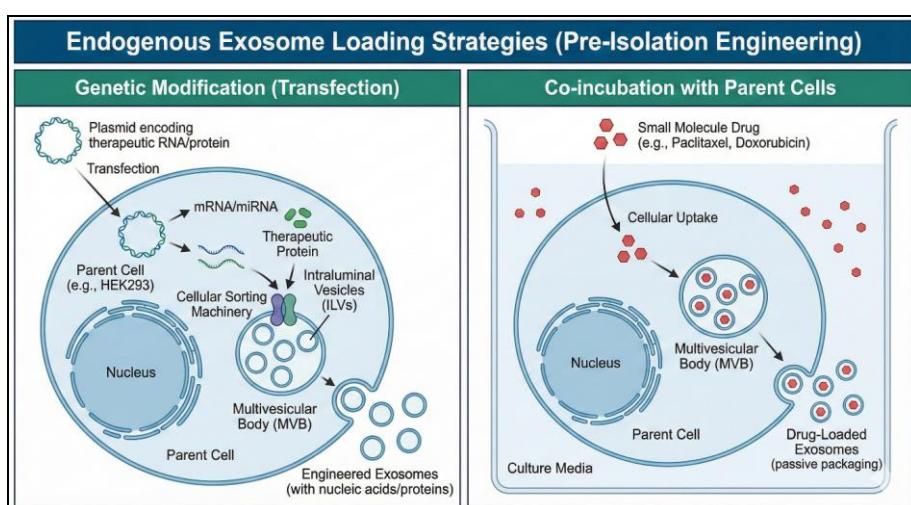
3.2 Characterization Standards: Validating the Vector.

Once isolated, the "MISEV2018" guidelines (Minimal Information for Studies of Extracellular Vesicles) dictate that exosomes must be characterized at the physical, biochemical, and functional levels to ensure reproducibility (Figure 4)(41).

Physical Characterization:

- **Nanoparticle Tracking Analysis (NTA):** Utilizes light scattering and Brownian motion to determine particle size distribution and concentration. It provides a more accurate count than protein quantification assays(42).
- **Dynamic Light Scattering (DLS):** useful for determining the average hydrodynamic diameter and polydispersity index (PDI) of the bulk sample(43).
- **Microscopy (TEM/Cryo-TEM):** Transmission Electron Microscopy is indispensable for visualizing the "cup-shaped" morphology (an artifact of drying) or the spherical lipid bilayer (in Cryo-TEM)(44). This is the only method to confirm the presence of intact vesicles versus protein aggregates.
- **Biochemical Characterization:**
- **Western Blotting:** The standard for identifying positive markers (CD63, CD81, TSG101, Alix) and negative markers (Calnexin, a biologically relevant control to prove the absence of cellular contamination)(45).
- **Zeta Potential:** A measure of the surface charge. Exosomes typically have a negative zeta potential (approx. -10 to -40 mV), which is crucial for colloidal stability and prevents aggregation(46).

Figure 4. Schematic representation of MISEV2018 exosome characterization standards.


Illustration of complementary methods for physical analysis (NTA, DLS, TEM/Cryo-TEM) and biochemical validation (Western Blotting, Zeta Potential) to ensure vector reproducibility.

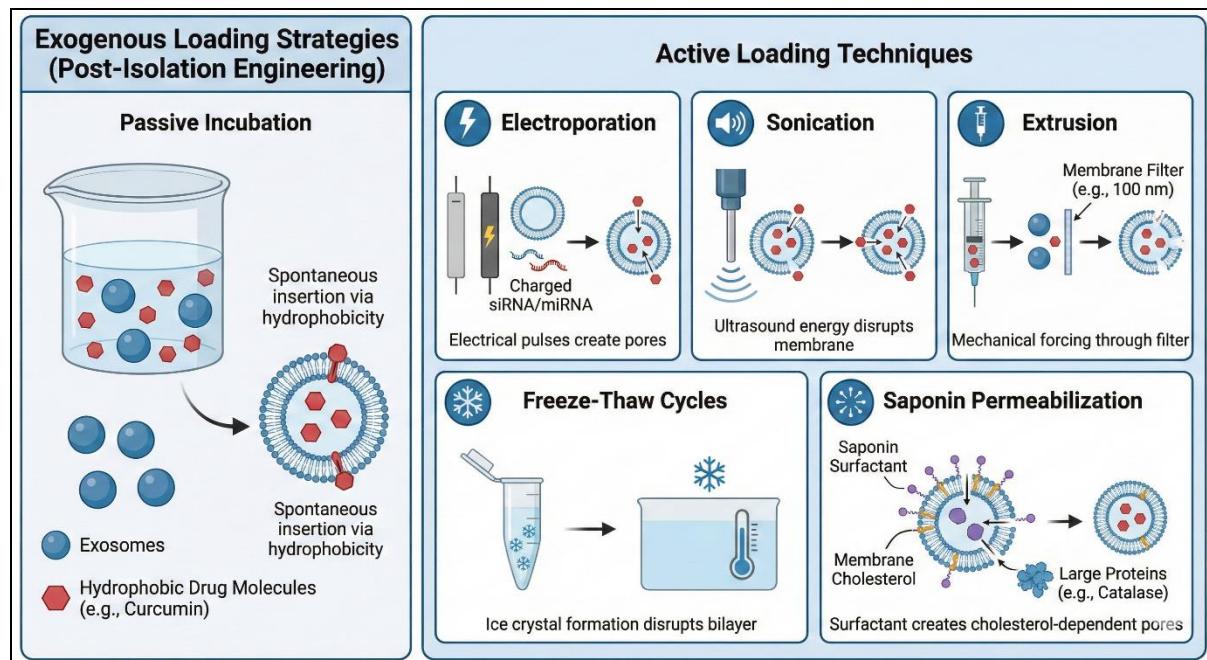
Drug Loading Strategies: Turning Vesicles into Vectors

The transition of exosomes from biological curiosities to potent drug delivery systems hinges on one critical capability: efficient cargo loading. Unlike synthetic nanoparticles, which are built *around* the drug, exosomes are pre-formed entities. The lipid bilayer, while protective, acts as a formidable barrier to exogenous molecules(47). Consequently, loading strategies are broadly categorized into two approaches: **Endogenous loading** (manipulating the parent cell before exosome isolation) and **Exogenous loading** (manipulating the exosomes after isolation)(17).

4.1 Endogenous Loading (Pre-Isolation Engineering) This "nature-inspired" approach exploits the cellular machinery to package therapeutic cargo into exosomes during their biogenesis as shown in Figure 5.

- **Genetic Modification (Transfection):** The most common method for loading nucleic acids (miRNA, siRNA, mRNA). Parent cells (e.g., HEK293, MSCs) are transfected with a plasmid encoding the therapeutic RNA or protein. The cellular sorting machinery then naturally incorporates these molecules into the intraluminal vesicles (ILVs)(13).
 - **Advantage:** It preserves membrane integrity perfectly, as no physical stress is applied to the exosome. It also allows for the expression of complex fusion proteins(11).
 - **Limitation:** Loading efficiency is often low and unpredictable, as it relies on stochastic cellular sorting mechanisms.
- **Co-incubation with Parent Cells:** Small molecule drugs (e.g., Paclitaxel, Doxorubicin) are added to the culture media. The cells uptake the drug and passively package a fraction of it into secreted exosomes(48).
 - **Limitation:** Cytotoxicity to the parent producer cells is a major constraint; if the drug kills the factory, production halts(49).

Figure 5. Mechanisms of endogenous cargo loading.


Comparison of pre-isolation engineering techniques. **Genetic Modification (Transfection)** exploits the cell's transcriptional and sorting machinery to package specific RNA or protein therapeutics into exosomes. **Co-incubation** relies on the passive uptake and sequestration of small molecule drugs from the culture media into the secreted vesicles(48). Both methods preserve membrane integrity by loading cargo before the exosome is harvested(47)

4.2 Exogenous Loading (Post-Isolation Engineering):

This approach involves loading purified exosomes and is generally preferred for small molecule drugs due to higher control over quantification(47). The different techniques has been shown in Figure 6.

- **Passive Incubation:** The simplest method involves mixing exosomes with drug molecules at a specific temperature. This relies on the concentration gradient and the hydrophobicity of the drug(50).
 - *Mechanism:* Hydrophobic drugs (e.g., Curcumin) can spontaneously penetrate and embed within the lipid bilayer(51).
 - *Critique:* Inefficient for hydrophilic drugs and large macromolecules(52).
- **Active Loading Techniques:** To load hydrophilic compounds or charged nucleic acids, the lipid bilayer must be temporarily disrupted(17).
 - **Electroporation:** The gold standard for loading siRNA/miRNA. Short, high-voltage electrical pulses create temporary pores in the exosome membrane, allowing charged molecules to enter(13).
 - *Advantages:* High loading efficiency for nucleotides.(53)
 - *Disadvantages:* Can cause substantial RNA aggregation and exosome precipitation(54). Optimizing the voltage to prevent irreversible membrane lysis is critical(55).
 - **Sonication:** Application of ultrasound energy acts as a mechanical shear force, compromising membrane integrity to allow drug influx.(56)
 - *Advantages:* often yields higher Loading Efficiency (LE) than electroporation for proteins and small molecules(57).
 - *Disadvantages:* Can permanently deform the exosome shape and create large aggregates(58).
 - **Extrusion:** Exosomes are forced through membrane filters with pore sizes smaller than the vesicle diameter (e.g., 100 nm). The membrane rupture and resealing process entraps the drug(58).
 - *Advantages:* Produces a uniform size distribution(59).
 - *Disadvantages:* Labor-intensive and can result in significant loss of vesicle protein markers(58).
 - **Freeze-Thaw Cycles:** Repeated cycles of freezing (at -80°C or liquid nitrogen) and thawing (at 37°C) induce ice crystal formation that disrupts the lipid bilayer(60).
 - *Advantages:* Simple and inexpensive.
 - *Disadvantages:* Generally lower loading efficiency compared to sonication or electroporation; improved by promoting aggregation of drug and lipid(61).
 - **Saponin Permeabilization:** Saponin is a surfactant that selectively interacts with membrane cholesterol to create pores(59).

- **Advantages:** Highly effective for loading large proteins (e.g., Catalase) without the physical trauma of sonication(59).
- **Disadvantages:** Saponin is toxic and must be painstakingly removed post-loading; residual surfactant can cause in vivo hemolysis(58).

Figure 6. Exogenous strategies for cargo loading.

Comparison of methods used to load isolated exosomes. **Passive Incubation** (left) relies on the spontaneous insertion of hydrophobic molecules. **Active Loading Techniques** (right) employ physical or chemical means to temporarily compromise membrane integrity to admit less permeable cargo. Active methods displayed include Electroporation, Sonication, Extrusion, Freeze-Thaw Cycles, and Saponin Permeabilization.

4.3. The Efficiency vs. Integrity Trade-off: A recurring theme in current literature is the inverse relationship between loading efficiency and vesicle integrity(17,47). Aggressive methods like sonication often achieve high drug content but destroy the "stealth" properties of the exosome surface proteins (CD47), potentially reducing circulation time(56,59). Conversely, passive incubation preserves the biological signature but often fails to deliver a therapeutic dose(52,58). The choice of strategy must therefore be tailored to the physicochemical properties of the specific cargo(60).

5. Surface Engineering for Targeted Delivery:

While unmodified exosomes exhibit a natural ability to interact with cells, their accumulation in specific target tissues is often insufficient for high-efficacy clinical applications. Without modification, systemically administered exosomes accumulate predominantly in the liver, spleen, and lungs due to scavenger receptor-mediated uptake by macrophages. To overcome this "biological barrier" and achieve site-specific delivery, surface engineering strategies are employed to impart active targeting capabilities. These strategies generally fall into two categories: **Genetic**

Engineering (modification of the parent cell) and **Chemical Modification** (direct modification of the exosome).

5.1 Genetic Engineering (Surface Display Technology):

This method involves manipulating the producer cells to express a fusion protein, which consists of a targeting peptide fused to a transmembrane protein naturally enriched in exosomes.

- **The LAMP-2b Anchor:** The Lysosome-associated membrane protein 2b (LAMP-2b) is the most widely used anchor. By fusing a targeting ligand (e.g., the **RVG peptide** which targets acetylcholine receptors on neuronal cells) to the N-terminus of LAMP-2b, the ligand is displayed on the outer surface of the secreted exosomes(13).
 - *Application:* This strategy has been famously used to deliver siRNA across the Blood-Brain Barrier (BBB) to treat Alzheimer's disease(13).
- **GPI-Anchored Proteins:** Glycosylphosphatidylinositol (GPI) anchors can also be used to tether antibodies or nanobodies to the exosome surface(54). Genetic engineering is highly stable and biologically compatible. However, it is restricted to peptide/protein ligands and requires the establishment of stable cell lines, which is time-consuming.

5.2. Chemical Modification (Post-Isolation Functionalization):

Chemical strategies allow for the attachment of a broader range of ligands (small molecules, aptamers, polymers) to purified exosomes.

- **Click Chemistry:** The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is highly efficient but copper toxicity is a concern(62). Therefore, **Copper-free Click Chemistry** (using strained cyclooctynes) has become the preferred method. This involves metabolically labeling the parent cells with azido-sugars, which are incorporated into surface glycans, providing a handle for "clicking" on targeting moieties(63).
 - *Advantage:* Reaction conditions are mild and do not compromise membrane integrity(62).
- **Hydrophobic Insertion:** Amphiphilic molecules (e.g., DSPE-PEG linked to a targeting ligand like Folate or RGD) can be inserted directly into the lipid bilayer. The hydrophobic tail anchors into the membrane while the functional head group remains exposed(64,65).
 - *Advantage:* Rapid and simple; does not require genetic manipulation.
- **Covalent Conjugation:** Standard amine-coupling (EDC/NHS chemistry) can attach ligands to surface proteins. However, this is "non-site-specific" and risks blocking natural protein interactions that are vital for exosome function(62,66).

5.3. Hybrid Systems: The "Bio-Synthetic" Convergence:

A burgeoning area of research involves fusing exosomes with synthetic liposomes to create **hybrid nanovesicles**. By co-extruding or freeze-thawing exosomes with functionalized liposomes, researchers can engineer vesicles that possess the high drug-loading capacity of liposomes and the biocompatible surface markers of exosomes(60,67). This strategy essentially "camouflages" synthetic carriers with a

biological membrane, extending their circulation time while allowing for precise surface customization(68).

Figure 7. Schematic overview of surface engineering strategies for targeted exosome delivery.

To overcome biological barriers and achieve site-specific accumulation, exosome surfaces can be modified through three primary approaches outlined in the panels. **(1) Genetic Engineering (Surface Display Technology):** Producer cells are manipulated via transfection with plasmids encoding fusion proteins (e.g., the transmembrane protein LAMP-2b fused with a targeting ligand like the RVG peptide) or GPI-anchored proteins. This results in the secretion of exosomes carrying the targeting moieties on their surface, enabling specific binding to receptors on target cells. **(2) Chemical Modification (Post-Isolation Functionalization):** Purified exosomes are directly modified using chemical techniques. Examples include **Copper-free Click Chemistry** to attach ligands to metabolic labels, **Hydrophobic Insertion** of amphiphilic molecules (e.g., DSPE-PEG-Folate) into the lipid bilayer, and **Covalent Conjugation** of ligands to surface proteins using EDC/NHS chemistry. **(3) Hybrid Systems (Bio-Synthetic Convergence):** Exosomes are fused with functionalized synthetic liposomes through processes like co-extrusion or freeze-thaw cycles. This creates **Hybrid Nanovesicles** that combine the natural biological markers of exosomes with the customizable surface and high drug-loading capacity of liposomes.

6 Therapeutic Applications:

The unique biological properties of exosomes—specifically their low immunogenicity, long circulating half-life, and intrinsic homing abilities—have positioned them as front-runners in the next generation of therapeutics. This section reviews their application in key clinical areas, with a focus on overcoming the limitations of conventional drug delivery systems.

6.1 Oncology: Overcoming Resistance and Toxicity:

Cancer therapy is the most advanced field for exosome application. The primary challenge in chemotherapy is the lack of specificity, leading to systemic toxicity (e.g., cardiotoxicity from Doxorubicin) and the development of Multi-Drug Resistance (MDR).

- **Targeted Chemotherapy Delivery:** Exosomes have been successfully engineered to deliver potent cytotoxics like Paclitaxel (PTX) and Doxorubicin (Dox).
 - *Breast Cancer:* Studies have shown that exosomes loaded with Doxorubicin (Exo-Dox) exhibit significantly lower cardiotoxicity compared to free Doxorubicin while maintaining anti-tumor efficacy(69). This is attributed to the "stealth" nature of exosomes, which reduces accumulation in cardiac tissue. Furthermore, exosomes can be engineered to target HER2+ breast cancer cells, enhancing uptake via receptor-mediated endocytosis.
 - *Reversing MDR:* A critical advantage of exosomes is their entry mechanism. While free drugs are often pumped out of cancer cells by efflux transporters (P-glycoprotein), exosomes enter via fusion or endocytosis, effectively bypassing these pumps and delivering the drug directly into the cytoplasm(70).
- **Gene Therapy (siRNA/miRNA):** Exosomes protect unstable RNA molecules from RNase degradation in the blood. They have been used to deliver siRNA against oncogenes (e.g., KRAS in pancreatic cancer) or to replenish tumor-suppressor miRNAs (e.g., miR-122 in liver cancer), effectively "silencing" tumor growth at the genetic level(11).

6.2 Neurology: Crossing the Blood-Brain Barrier (BBB):

The BBB remains the single greatest obstacle in treating central nervous system (CNS) disorders, blocking nearly 98% of small-molecule drugs and 100% of large-molecule therapeutics.

- **The "Trojan Horse" Strategy:** Exosomes, particularly those derived from immune cells or modified with specific peptides (like RVG), can cross the BBB via transcytosis(71).
- **Glioblastoma (GBM):** Treating GBM is notoriously difficult due to the BBB and the infiltrative nature of the tumor. Exosomes loaded with chemotherapeutics (e.g., Paclitaxel) or therapeutic miRNAs (e.g., miR-21 inhibitors) have shown promise in preclinical models, delivering cargo specifically to intracranial tumors and increasing survival rates compared to systemic administration(72).
- **Neurodegenerative Diseases:** In Alzheimer's and Parkinson's disease models, exosomes have been used to deliver catalase (to reduce oxidative stress) or siRNA (to reduce BACE1 levels, a key enzyme in amyloid-beta production), demonstrating a clear functional recovery that synthetic carriers have failed to achieve(71).

6.3. Regenerative Medicine:

Beyond drug delivery, "naïve" exosomes derived from stem cells act as therapeutics themselves.

- **Mesenchymal Stem Cell (MSC)-Exosomes:** Instead of transplanting stem cells (which carries risks of teratoma formation and immune rejection), researchers are using the exosomes secreted by these cells. These vesicles are rich in growth factors and anti-inflammatory cytokines(73).

- **Applications:** They have shown remarkable efficacy in promoting tissue repair after myocardial infarction (reducing scar tissue), accelerating wound healing (e.g., in diabetic ulcers), and mitigating acute kidney injury(72–75). This "cell-free" therapy offers the benefits of stem cells with the safety profile of a pharmaceutical product.

6.4. Infectious Diseases and Vaccines:

Exosomes play a natural role in antigen presentation. This property is being harnessed for vaccine development.

- **Exosome-Based Vaccines:** Bacterial or viral antigens can be loaded onto exosomes to stimulate a potent immune response. Because exosomes naturally interact with Dendritic Cells (DCs), they can serve as "adjuvant-free" vaccines, presenting antigens more efficiently than soluble proteins(76).

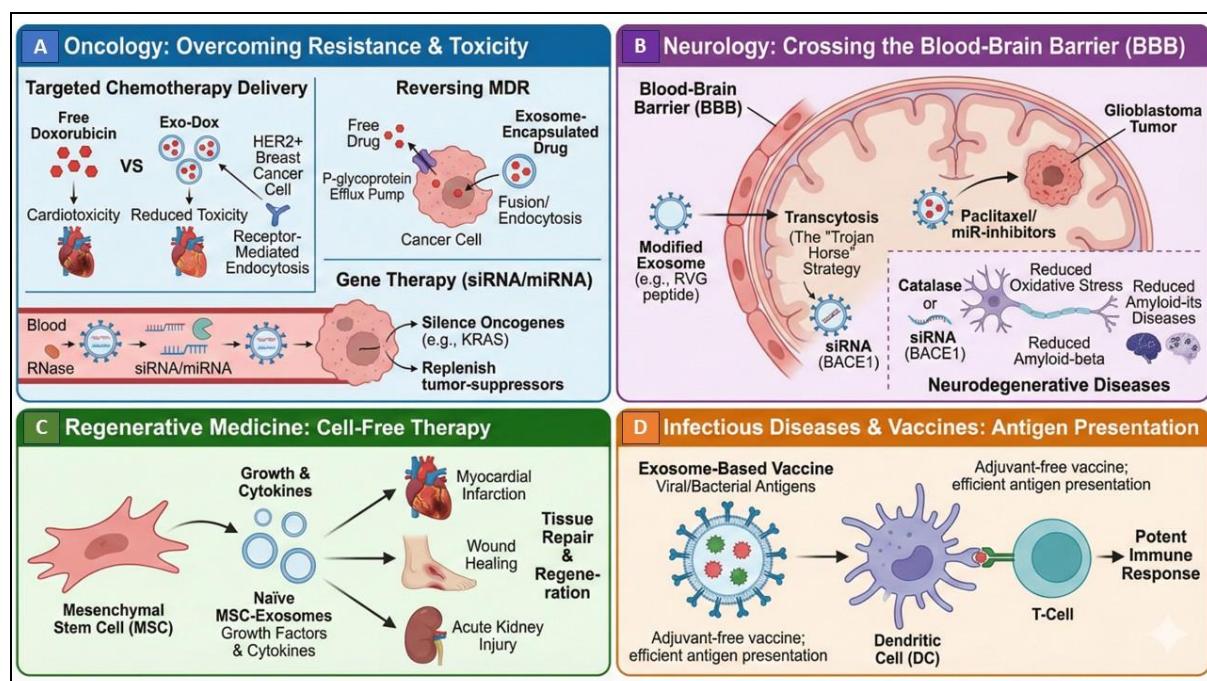


Figure 8. Therapeutic versatility of exosomes.

The schematic highlights four key clinical applications: **(A) Oncology**, where targeted delivery reduces toxicity and reverses drug resistance; **(B) Neurology**, using exosomes to cross the blood-brain barrier for CNS treatment; **(C) Regenerative Medicine**, utilizing MSC-derived exosomes for "cell-free" tissue repair; and **(D) Immunology**, demonstrating their use as adjuvant-free vaccines for efficient antigen presentation.

6.5. Clinical Translation: Selected Case Studies and Trials

While preclinical data is abundant, the true test of exosome therapeutics lies in clinical translation. A review of completed and ongoing clinical trials reveals a landscape shifting from observational studies to interventional Phase I/II trials.

Case Study 1: Dendritic Cell-Derived Exosomes (DEX) for Non-Small Cell Lung Cancer (NSCLC) One of the pioneering efforts in exosome-based immunotherapy was conducted by the Gustave Roussy Institute (France). In a Phase I trial

(NCT01159288), researchers utilized exosomes derived from autologous dendritic cells (DCs). These DEX were "pulsed" with MAGE-A3 peptides—a cancer-testis antigen frequently expressed in NSCLC—to serve as a cell-free vaccine.

- **Mechanism:** The hypothesis was that DEX would present the MAGE-A3 antigen to the patient's immune system more effectively than soluble peptides, stimulating a specific Cytotoxic T-Lymphocyte (CTL) response.
- **Outcome:** The trial demonstrated an excellent safety profile with no Grade III/IV toxicity observed, confirming the high biocompatibility of autologous exosomes. While the primary endpoint was safety, secondary endpoints showed that a subset of patients experienced long-term disease stabilization. This trial was pivotal in proving that large-scale production of GMP-grade exosomes was feasible and safe, paving the way for "second-generation" DEX loaded with stronger adjuvants (e.g., TLR ligands) to enhance potency (77).

Case Study 2: MSC-Exosomes for Cutaneous Wound Healing Chronic non-healing ulcers (e.g., diabetic foot ulcers) represent a major clinical burden. Mesenchymal Stem Cell (MSC)-derived exosomes have emerged as a superior alternative to direct stem cell transplantation, which carries risks of uncontrolled differentiation(78).

- **Mechanism:** In various clinical applications, MSC-exosomes function by transferring a complex cargo of growth factors (VEGF, FGF) and miRNAs (e.g., miR-126) that promote angiogenesis, collagen synthesis, and re-epithelialization (79).
- **Clinical Observation:** A notable example is the use of exosomes derived from adipose tissue MSCs (ADSC-Exos). In clinical pilot studies, topical application of these exosomes to chronic wounds resulted in accelerated closure rates compared to standard care. Histological analysis revealed reduced scar formation and enhanced alignment of collagen fibers. Unlike whole stem cells, these exosomes did not trigger local inflammation, suggesting a "pro-regenerative" rather than "pro-inflammatory" modulation of the wound microenvironment (79,80).

Case Study 3: Codiak BioSciences (exoSTING) for Solid Tumors Moving beyond "naive" exosomes, Codiak BioSciences initiated trials for **exoSTING (CDK-002)**, representing the era of precision-engineered exosomes.

- **Design:** This formulation consists of exosomes engineered to carry a STING (Stimulator of Interferon Genes) agonist specifically inside the lumen, while displaying a protein scaffold to facilitate uptake by antigen-presenting cells (81).
- **Significance:** STING agonists are potent immune activators but are too toxic for systemic delivery in their free form. By encapsulating the agonist within the exosome, CDK-002 aims to turn "cold" tumors "hot" by selectively activating the immune system within the tumor microenvironment without causing systemic cytokine storms. This trial (NCT04592484) represents a landmark in validating the "engineered vector" approach over the "passive carrier" approach (82).

Challenges, Limitations, and Regulatory Landscape

Despite the exponential growth in exosome research, the translation of these bio-inspired carriers from bench to bedside is impeded by significant technical and regulatory hurdles. Unlike synthetic small molecules or liposomes, exosomes are complex biological products, and their "living" origin introduces unique variables that complicate manufacturing and quality control (83).

7.1 Heterogeneity and Standardization

The most pervasive challenge is the intrinsic heterogeneity of exosomes. Even when derived from a clonal cell line, the secreted vesicles vary in size, content, and surface marker expression (84). This batch-to-batch variability makes it difficult to establish the strict specifications required for pharmaceutical products. Currently, there is no universal "gold standard" for quantifying exosomes; protein content, particle number (NTA), and lipid content often yield non-correlating data (85). Establishing a standardized "Potency Assay" that correlates physicochemical properties with biological activity is an urgent unmet need (86).

7.2 Large-Scale Production (Upstream Processing)

Generating clinically relevant doses of exosomes is a logistical bottleneck. A typical therapeutic dose may require 10^{10} to 10^{12} particles per patient (87). Traditional 2D cell culture (T-flasks) is unscalable and labor-intensive. The field is shifting towards **3D Bioreactors** (e.g., hollow fiber bioreactors or stirred-tank reactors), which dramatically increase the cell surface area and exosome yield. However, changing the culture environment from 2D to 3D can alter the cellular phenotype and, consequently, the composition of the secreted exosomes, requiring re-validation of the product (88).

7.3 Purification and Storage (Downstream Processing)

Standard isolation methods like ultracentrifugation are not scalable. The industry is moving towards **Tangential Flow Filtration (TFF)** combined with chromatography, which allows for the continuous processing of large volumes of media (89).

- **Stability:** Exosomes are thermodynamically unstable. Long-term storage at -80°C is energy-intensive and impractical for widespread distribution. **Lyophilization (freeze-drying)** is the preferred preservation method, but it often causes vesicle aggregation and membrane rupture. The development of specific cryoprotectants (e.g., trehalose) is essential to preserve integrity during the freeze-drying process (90,91).

7.4. Regulatory Ambiguity

The regulatory landscape for exosomes is still evolving. They occupy a "grey area" between biologicals, cell therapies, and drug delivery systems.

- **Classification:** The FDA currently regulates exosomes under the framework of **Biological Products** (Section 351 of the PHS Act). If the exosomes are unmodified (e.g., MSC-derived), they are treated similarly to cell therapies. If they are heavily modified (drug-loaded or surface-engineered), the regulatory pathway becomes more complex, potentially requiring evaluation as a combination product (92).
- **Safety Concerns:** Since exosomes facilitate intercellular communication, there is a theoretical risk that tumor-derived exosomes could promote metastasis or that

stem-cell exosomes could trigger unwanted immune responses if not perfectly purified (e.g., removal of bovine serum EVs from culture media)(93).

CONCLUSION:

Exosomes represent a convergence of nature's evolutionary design and human engineering. They offer a solution to the "delivery problem" that has plagued nanomedicine for decades, providing a biocompatible, non-immunogenic, and highly efficient vehicle for transporting complex biological cargos across the most formidable biological barriers.

The journey from regarding exosomes as "cellular dust" to recognizing them as sophisticated "intercellular mailmen" has opened a new frontier in pharmacotherapy. We are moving away from simple "passive" carriers towards "smart," genetically engineered vesicles capable of active targeting and stimuli-responsive release. The integration of hybrid technologies—fusing the manufacturing reliability of liposomes with the biological functionality of exosomes—holds particular promise for bridging the gap between the lab and the clinic.

However, the path forward requires a shift in focus from "discovery" to "process engineering." The successful commercialization of exosome therapeutics will not depend solely on identifying new biomarkers or targets, but on solving the mundane yet critical problems of scalable manufacturing, storage stability, and regulatory standardization. As these technical barriers are dismantled, it is foreseeable that exosome-based formulations will become a cornerstone of precision medicine, particularly for the treatment of refractory cancers and neurodegenerative diseases.

REFERENCES

1. Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. *Nat Rev Cancer.* 2008;8(6):473–80.
2. Gazzola S, Neundorf I, Sewald N. The magic bullet evolution in tumor therapy: novel drug conjugates for targeted delivery. Vol. 15, *Frontiers in Pharmacology.* Frontiers Media SA; 2024. p. 1523948.
3. Barenholz YC. Doxil®—The first FDA-approved nano-drug: Lessons learned. *Journal of controlled release.* 2012;160(2):117–34.
4. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. *Journal of controlled release.* 2000;65(1–2):271–84.
5. Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. *Journal of Biological Chemistry.* 1992;267(26):18759–65.
6. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, Van der Meer JWM, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. *J Pharmacol Exp Ther.* 2000;292(3):1071–9.
7. Pardridge WM. Drug transport across the blood–brain barrier. *Journal of cerebral blood flow & metabolism.* 2012;32(11):1959–72.
8. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with

released vesicles (exosomes). *Journal of Biological Chemistry*. 1987;262(19):9412–20.

9. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. *Science* (1979). 2020;367(6478):eaau6977.
10. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat Cell Biol*. 2007;9(6):654–9.
11. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. *Nature*. 2017;546(7659):498–503.
12. Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. *Theranostics*. 2021;11(7):3183.
13. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. *Nat Biotechnol*. 2011;29(4):341–5.
14. Yáñez-Mó M, Siljander PRM, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. *J Extracell Vesicles*. 2015;4(1):27066.
15. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles*. 2018;7(1):1535750.
16. Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. *Blood*. 2004;104(9):2761–6.
17. Batrakova E V, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. *Journal of Controlled Release*. 2015;219:396–405.
18. Huotari J, Helenius A. Endosome maturation. *EMBO J*. 2011;30(17):3481–500.
19. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. *Dev Cell*. 2011;21(1):77–91.
20. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. *Science* (1979). 2008;319(5867):1244–7.
21. Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. *Front Immunol*. 2014;5:442.
22. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. *Nat Cell Biol*. 2010;12(1):19–30.
23. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annu Rev Cell Dev Biol*. 2014;30(1):255–89.
24. Llorente A, Skotland T, Sylväne T, Kauhanen D, Róg T, Orłowski A, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. *Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids*. 2013;1831(7):1302–9.

25. Wubbolts R, Leckie RS, Veenhuizen PTM, Schwarzmann G, Mobius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation. *Journal of Biological Chemistry*. 2003;278(13):10963–72.
26. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. *Proceedings of the National Academy of Sciences*. 2016;113(8):E968–77.
27. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. *Nature*. 2015;527(7578):329–35.
28. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat Cell Biol*. 2007;9(6):654–9.
29. O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. *Nat Rev Mol Cell Biol*. 2020;21(10):585–606.
30. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. *Theranostics*. 2017;7(3):789.
31. Konoshenko MY, Lekchnov EA, Vlassov A V, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. *Biomed Res Int*. 2018;2018(1):8545347.
32. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. *Curr Protoc Cell Biol*. 2006;30(1):3–22.
33. Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, et al. Current methods for the isolation of extracellular vesicles. *Biol Chem*. 2013;394(10):1253–62.
34. Böing AN, Van Der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. *J Extracell Vesicles*. 2014;3(1):23430.
35. Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? *Int J Mol Sci*. 2020;21(18):6466.
36. Rider MA, Hurwitz SN, Meckes Jr DG. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. *Sci Rep*. 2016;6(1):23978.
37. Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. *PLoS One*. 2017;12(1):e0170628.
38. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. *Methods*. 2012;56(2):293–304.
39. Liga A, Vliegenthart ADB, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. *Lab Chip*. 2015;15(11):2388–94.

40. Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. *Proceedings of the National Academy of Sciences*. 2017;114(40):10584–9.
41. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles*. 2018;7(1):1535750.
42. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, Hole P, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. *Nanomedicine*. 2011;7(6):780–8.
43. Palmieri V, Lucchetti D, Gatto I, Maiorana A, Marcantoni M, Maulucci G, et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. *Journal of nanoparticle research*. 2014;16(9):2583.
44. Cizmar P, Yuana Y. Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. In: *Extracellular vesicles: methods and protocols*. Springer; 2017. p. 221–32.
45. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Vol. 3, *Journal of extracellular vesicles*. Taylor & Francis; 2014. p. 26913.
46. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. *Colloids Surf B Biointerfaces*. 2011;87(1):146–50.
47. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. *Acta Pharmacol Sin*. 2017;38(6):754–63.
48. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. *Journal of controlled release*. 2014;192:262–70.
49. Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. *Nat Commun*. 2012;3(1):1282.
50. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. *Molecular therapy*. 2010;18(9):1606–14.
51. Oskouie MN, Aghili Moghaddam NS, Butler AE, Zamani P, Sahebkar A. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. *J Cell Physiol*. 2019;234(6):8182–91.
52. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. *Adv Drug Deliv Rev*. 2016;106:148–56.

53. Wahlgren J, Karlson TDL, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. *Nucleic Acids Res.* 2012;40(17):e130–e130.
54. Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. *Journal of Controlled Release.* 2013;172(1):229–38.
55. Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. *Cytotechnology.* 2016;68(5):2125–38.
56. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. *Nanomedicine.* 2016;12(3):655–64.
57. Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. *Nanomedicine.* 2018;14(1):195–204.
58. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. *Journal of Controlled Release.* 2015;205:35–44.
59. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. *Journal of controlled release.* 2015;207:18–30.
60. Sato YT, Umezaki K, Sawada S, Mukai S atsu, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. *Sci Rep.* 2016;6(1):21933.
61. Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. *Molecular Therapy.* 2018;26(12):2838–47.
62. Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, et al. Surface functionalization of exosomes using click chemistry. *Bioconjug Chem.* 2014 Oct 15;25(10):1777–84.
63. Lee TS, Kim Y, Zhang W, Song IH, Tung CH. Facile metabolic glycan labeling strategy for exosome tracking. *Biochim Biophys Acta Gen Subj.* 2018 May 1;1862(5):1091–100.
64. Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. Vol. 21, *Journal of Nanobiotechnology.* BioMed Central Ltd; 2023.
65. Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. *Biomaterials.* 2018 Jan 1;150:137–49.
66. Wang D, Bai Y, Cheng G, Shen S, Xiao G, Ma D, et al. Exosome-drug conjugates delivery: a promising strategy for ameliorating the pharmacokinetic profile of artesunate. *Front Bioeng Biotechnol.* 2024;12.

67. Nugroho FAA, Świtlik D, Armanious A, O'Reilly P, Darmadi I, Nilsson S, et al. Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution. *ACS Nano*. 2022 Oct 25;16(10):15814–26.

68. Sun L, Fan M, Huang D, Li B, Xu R, Gao F, et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. *Biomaterials*. 2021 Apr 1;271.

69. Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S, et al. Exosomal Doxorubicin Reduces the Cardiac Toxicity of Doxorubicin. *Nanomedicine [Internet]*. 2015 Oct 1;10(19):2963–71. Available from: <https://doi.org/10.2217/nnm.15.118>

70. Li J, Gao N, Gao Z, Liu W, Pang B, Dong X, et al. The Emerging Role of Exosomes in Cancer Chemoresistance. Vol. 9, *Frontiers in Cell and Developmental Biology*. Frontiers Media S.A.; 2021.

71. Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. *Theranostics [Internet]*. 2021;11(18):8926–44. Available from: <https://www.thno.org/v11p8926.htm>

72. Wu X, Zheng T, Zhang B. Exosomes in Parkinson's Disease. Vol. 33, *Neuroscience Bulletin*. Science Press; 2017. p. 331–8.

73. Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. *Stem Cell Res*. 2010 May;4(3):214–22.

74. Jing S, Li H, Xu H. Mesenchymal stem cell derived exosomes therapy in diabetic wound repair. Vol. 18, *International Journal of Nanomedicine*. Dove Medical Press Ltd; 2023. p. 2707–20.

75. Wu J, Chen LH, Sun SY, Li Y, Ran XW. Mesenchymal stem cell-derived exosomes: The dawn of diabetic wound healing. *World J Diabetes [Internet]*. 2022 Dec 15;13(12):1066–95. Available from: <https://www.wjgnet.com/1948-9358/full/v13/i12/1066.htm>

76. Yi K, Sun C, Yuan Y, Luo Z, Luo H, Xie Y. A new weapon: the application of tumor vaccines based on extracellular exosomal heat shock proteins in immunotherapy. Vol. 16, *Frontiers in Immunology*. Frontiers Media SA; 2025.

77. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. *Oncoimmunology*. 2016 Apr 2;5(4):e1071008.

78. An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, Gu L, Zhang C, Wang B, Wei W, Li D. Exosomes from adipose-derived stem cells and application to skin wound healing. *Cell proliferation*. 2021 Mar;54(3):e12993.

79. Hu LI, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L. Exosomes derived from human adipose mesenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. *Scientific reports*. 2016 Sep 12;6(1):32993.

80. Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, Xiong H, Zhan P, Wang Y, Wang C, Machens HG. Microvesicles from human adipose stem cells promote

wound healing by optimizing cellular functions via AKT and ERK signaling pathways. *Stem Cell Research & Therapy*. 2019 Jan 31;10(1):47.

- 81. Zhou Q, Zhou Y, Li T, Ge Z. Nanoparticle-mediated STING agonist delivery for enhanced cancer immunotherapy. *Macromolecular Bioscience*. 2021 Aug;21(8):2100133.
- 82. ClinicalTrials.gov. (2020). A First-in-Human Study of CDK-002 (exoSTING) in Subjects With Advanced/Metastatic, Recurrent, Injectable Solid Tumors (ClinicalTrials.gov Identifier NCT04592484). National Library of Medicine.
- 83. Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. *Clinical and translational science*. 2024 Aug;17(8):e13904.
- 84. Willms, E., Cabañas, C., Mäger, I., Wood, M. J. A., & Vader, P. (2018). Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. *Frontiers in Immunology*, 9, 738.
- 85. Nelson BC, Maragh S, Ghiran IC, Jones JC, DeRose PC, Elsheikh E, Vreeland WN, Wang L. Measurement and standardization challenges for extracellular vesicle therapeutic delivery vectors. *Nanomedicine*. 2020 Sep 1;15(22):2149-70.
- 86. Yuan, Y., Wang, Y., & Liu, J. (2023). Comparative studies of different preservation methods and relative freeze-drying formulations for extracellular vesicle pharmaceutical applications. *Pharmaceutics*, 15(1).
- 87. Ma S, Ene J, McGarraugh C, Ma S, Esmonde C, Liu Y, Li Y. Extracellular Vesicle Secretion from 3D Culture of Human Adipose-Derived Mesenchymal Stem Cells in Scalable Bioreactors. *Bioengineering*. 2025 Aug 29;12(9):933.
- 88. Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, Wollacott R, Sapp E, Dubuke ML, Li X, Shaffer SA. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. *Molecular Therapy*. 2018 Dec 5;26(12):2838-47.
- 89. Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. *Cells*. 2018 Dec 16;7(12):273.
- 90. Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. *Scientific reports*. 2016 Nov 8;6(1):36162.
- 91. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Portillo HA, O'Driscoll L. Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper. *Journal of extracellular vesicles*. 2015 Jan 1;4(1):30087.
- 92. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S. Tumour exosome integrins determine organotropic metastasis. *Nature*. 2015 Nov 19;527(7578):329-35.
- 93. Yi, K., Sun, C., Yuan, Y., & Xie, Y. (2025). Tumor-derived extracellular vesicles: Key drivers of immunomodulation in breast cancer. *Frontiers in Immunology*, 16.